首页    新闻    下载    文档    论坛     最新漏洞    黑客教程    数据库    搜索    小榕软件实验室怀旧版    星际争霸WEB版    最新IP准确查询   
名称: 密码:      忘记密码  马上注册

正在浏览:   1 名游客





交换机技术资料大全
网站管理员
注册日期:
1970/1/1 8:00
所属群组:
网站管理员
注册会员
帖子: 56
等级: 6; EXP: 34
HP : 0 / 133
MP : 18 / 19576
离线
交换机的重要技术参数

下面我将对交换机的重要技术参数作一一介绍,方便网友在选购交换机时比较不同厂商的不同产品。每一个参数都影响到交换机的性能、功能和不同集成特性。
 1、转发技术:交换机采用直通转发技术或存储转发技术?
 2、延时:交换机数据交换延时多少?

 3、管理功能:交换机提供给拥护多少可管理功能?

 4、单/多MAC地址类型:每个端口是单MAC地址,还是多MAC地址?

 5、外接监视支持:交换机是否允许外接监视工具管理端口、电路或交换机所有流量?

 6、扩展树:交换机是否提供扩展树算法或其他算法,检测并限制拓扑环?

 7、全双工:交换机是否允许端口同时收/发,全双工通讯?

 8、高速端口集成:交换机是否提供高速端口连接关键业务服务器或上行主干?

 下面逐项讨论各项参数:

 1) 转发技术:(Forwarding Technologies)

 转发技术是指交换机所采用的用于决定如何转发数据包的转发机制。各种转发技术各有优缺点。

直通转发技术:(Cut-through)

交换机一旦解读到数据包目的地址,就开始向目的端口发送数据包。通常,交换机在接收到数据包的前6个字节时,就已经知道目的地址,从而可以决定向哪个端口转发这个数据包。直通转发技术的优点是转发速率快、减少延时和提高整体吞吐率。其缺点是交换机在没有完全接收并检查数据包的正确性之前就已经开始了数据转发。这样,在通讯质量不高的环境下,交换机会转发所有的完整数据包和错误数据包,这实际上是给整个交换网络带来了许多垃圾通讯包,交换机会被误解为发生了广播风暴。总之,直通转发技术适用与网络链路质量较好、错误数据包较少的网络环境。

存储转发技术:(Store-and-Forward)

存储转发技术要求交换机在接收到全部数据包后再决定如何转发。这样一来,交换机可以在转发之前检查数据包完整性和正确性。其优点是:没有残缺数据包转发,减少了潜在的不必要数据转发。其缺点是:转发速率比直接转发技术慢。所以,存储转发技术比较适应与普通链路质量的网络环境。

碰撞逃避转发技术:(Collision-avoidance)

某些厂商(3Com)的交换机还提供这种厂商特定的转发技术。碰撞逃避转发技术通过减少网络错误繁殖,在高转发速率和高正确率之间选择了一条折衷的解决办法。

 2) 延时:(Latency)

 交换机延时是指从交换机接收到数据包到开始向目的端口复制数据包之间的时间间隔。有许多因素会影响延时大小,比如转发技术等等。采用直通转发技术的交换机有固定的延时。因为直通式交换机不管数据包的整体大小,而只根据目的地址来决定转发方向。所以,它的延时是固定的,取决于交换机解读数据包前6个字节中目的地址的解读速率。采用存储转发技术的交换机由于必须要接收完了完整的数据包才开始转发数据包,所以它的延时与数据包大小有关。数据包大,则延时大;数据包小,则延时小。

 3) 管理功能:(Management)

 交换机的管理功能是指交换机如何控制用户访问交换机,以及用户对交换机的可视程度如何。通常,交换机厂商都提供管理软件或满足第三方管理软件远程管理交换机。一般的交换机满足SNMP MIB I / MIB II统计管理功能。而复杂一些的交换机会增加通过内置RMON组(mini-RMON)来支持RMON主动监视功能。有的交换机还允许外接RMON探监视可选端口的网络状况。

 4) 单/多MAC地址类型:(Single- versus Multi-MAC)

 单MAC交换机的每个端口只有一个MAC硬件地址。多MAC交换机的每个端口捆绑有多个MAC硬件地址。单MAC交换机主要设计用于连接最终用户、网络共享资源或非桥接路由器。它们不能用于连接集线器或含有多个网络设备的网段。多MAC交换机在每个端口有足够存储体记忆多个硬件地址。多MAC交换机的每个端口可以看作是一个集线器,而多MAC交换机可以看作是集线器的集线器。每个厂商的交换机的存储体Buffer的容量大小各不相同。这个Buffer容量的大小限制了这个交换机所能够提供的交换地址容量。一旦超过了这个地址容量,有的交换机将丢弃其它地址数据包,有的交换机则将数据包复制到各个端口不作交换。

 5) 外接监视支持:(Extendal Monitoring)

 一些交换机厂商提供“监视端口”(monitoring port),允许外接网络分析仪直接连接到交换机上监视网络状况。但各个厂商的实现方法各不相同。

 6) 扩展树:(Spanning Tree)

 由于交换机实际上是多端口的透明桥接设备,所以交换机也有桥接设备的固有问题“拓扑环”问题(Topology Loops)。当某个网段的数据包通过某个桥接设备传输到另一个网段,而返回的数据包通过另一个桥接设备返回源地址。这个现象就叫“拓扑环”。一般,交换机采用扩展树协议算法让网络中的每一个桥接设备相互知道,自动防止拓扑环现象。交换机通过将检测到的“拓扑环”中的某个端口断开,达到消除“拓扑环”的目的,维持网络中的拓扑树的完整性。在网络设计中,“拓扑环”常被推荐用于关键数据链路的冗余备份链路选择。所以,带有扩展树协议支持的交换机可以用于连接网络中关键资源的交换冗余。

 7) 全双工:(Full Duplex)

 全双工端口可以同时发送和接收数据,但这要交换机和所连接的设备都支持全双工工作方式。具有全双工功能的交换机具有以下优点:

1、高吞吐量(Throughput):两倍于单工模式通信吞吐量。

2、避免碰撞(Collision Avoidance):没有发送/接收碰撞。

3、突破长度限制(Improved Distance Limitation):由于没有碰撞,所以不受CSMA/CD链路长度的限制。通信链路的长度限制只与物理介质有关。

 现在支持全双工通信的协议有:快速以太网、千兆以太网和ATM。

 8) 高速端口集成:(High-Speed Intergration)

交换机可以提供高带宽“管道”(固定端口、可选模块或多链路隧道)满足交换机的交换流量与上级主干的交换需求。防止出现主干通信瓶颈。常见的高速端口有:

FDDI:应用较早,范围广。但有协议转换花费。

Fast Ethernet / Gigabit Ethernet:连接方便,协议转换费用少;但受到网络规模限制。

ATM:可提供高速交换端口;但协议转换费用大。

ATM交换(ATM Switch)

 随着ATM交换技术的发展,现在企业网络中越来越多在高速网络主干或边缘网络采用ATM交换技术。根据现有企业计算的发展要求,适应数据网络交换的技术趋势,我们有必要了解ATM。ATM的数据交换由一个一个固定长度的ATM信元组成。每个ATM信元都是53字节长(5个字节长的信头和48字节长的信体)。信头包括虚拟通路(VP)和虚拟电路(VC)标识等地址信息。ATM根据VP和VC来确定信元的发送源地址和接收目的地址。

ATM交换机中的连接分为永久虚拟电路(PVC)和交换虚拟电路(SVC)两种。PVC是在源地址与目的地址之间的永久性硬件电路连接。SVC是根据实时交换要求建立的临时交换电路连接。两者的最大区别是:PVC不论是否有数据传输,它都保持连接;而SVC在数据传输完成后就自动断开。两者的应用区别是:在通常的ATM交换中,有一些PVC用于保持信号和管理信息通 讯,保持永久连接;而SVC主要用于大量的具体数据的传输。

 ATM交换另一个特点是:ATM本身就是全双工的。发送数据和接收数据在不同虚拟电路中同时进行,保持双向高速通讯。为了满足以太网帧(Frames)与ATM信元(Cells)的相互通讯要求,ATM协议标准规定了针对数据应用的ATM适配层(ATM Adaption Layer),它工作在帧交换和信元交换之间,将以太帧的逻辑电路层的地址信息对应得转换为虚拟电路VC、虚拟通路VP地址信息,完成帧-信元转换和信元-帧转换工作。

 ATM交换的广泛应用,也给交换网络的网络监视和管理带来了新的挑战。

 

虚拟局域网(VLAN)

 交换技术的发展,也加快了新的交换技术(VLAN)的应用速度。通过将企业网络划分为虚拟网络VLAN网段,可以强化网络管理和网络安全,控制不必要的数据广播。在共享网络中,一个物理的网段就是一个广播域。而在交换网络中,广播域可以是有一组任意选定的第二层网络地址(MAC地址)组成的虚拟网段。这样,网络中工作组的划分可以突破共享网络中的地理位置限制,而完全根据管理功能来划分。这种基于工作流的分组模式,大大提高了网络规划和重组的管理功能。

 在同一个VLAN中的工作站,不论它们实际与哪个交换机连接,它们之间的通讯就好象在独立的集线器上一样。同一个VLAN中的广播只有VLAN中的成员才能听到,而不会传输到其他的 VLAN中去,这样可以很好的控制不必要的广播风暴的产生。同时,若没有路由的话,不同VLAN之间不能相互通讯,这样增加了企业网络中不同部门之间的安全性。网络管理员可以通过配置VLAN之间的路由来全面管理企业内部不同管理单元之间的信息互访。交换机是根据用户工作站的MAC地址来划分VLAN的。所以,用户可以自由的在企业网络中移动办公,不论他在何处接入交换网络,他都可以与VLAN内其他用户自如通讯。

 VLAN可以是有混合的网络类型设备组成,比如:10M以太网、100 M以太网、令牌网、FDDI、CDDI等等,可以是工作站、服务器、集线器、网络上行主干等等。

 VLAN的管理需要比较复杂的专门软件,它通过对用户、MAC地址、交换机端口号、VLAN号等管理对象的综合管理,来满足整个网络的VLAN划分、监视等功能,以及其他扩展管理功能。现在比较通用的VLAN的划分方法是基于MAC地址。但也有一些厂商的交换机提供更多的VLAN划分方法:MAC地址、协议地址、交换机端口、网络应用类型和用户权限等等。

 用户在选择交换机的同时,应当仔细考察选购的交换机的VLAN功能,根据自己企业的实际需要,选择满足要求而且管理方便的交换机。同时,应当特别注意现在不同厂商的交换机的VLAN之间大多数是不兼容的。

第四层交换

一,第四层交换简述
  第四层交换的一个简单定义是:它是一种功能,它决定传输不仅仅依据MAC地址(第二层网桥)或源/目标IP地址(第三层路由),而且依据TCP/UDP(第四层) 应用端口号。第四层交换功能就象是虚IP,指向物理服务器。它传输的业务服从的协议多种多样,有HTTP、FTP、NFS、Telnet或其他协议。这些业务在物理服务器基础上,需要复杂的载量平衡算法。在IP世界,业务类型由终端TCP或UDP端口地址来决定,在第四层交换中的应用区间则由源端和终端IP地址、TCP和UDP端口共同决定。
  在第四层交换中为每个供搜寻使用的服务器组设立虚IP地址(VIP),每组服务器支持某种应用。在域名服务器(DNS)中存储的每个应用服务器地址是VIP,而不是真实的服务器地址。
  当某用户申请应用时,一个带有目标服务器组的VIP连接请求(例如一个TCP SYN包)发给服务器交换机。服务器交换机在组中选取最好的服务器,将终端地址中的VIP用实际服务器的IP取代,并将连接请求传给服务器。这样,同一区间所有的包由服务器交换机进行映射,在用户和同一服务器间进行传输。
二,第四层交换的原理
  OSI模型的第四层是传输层。传输层负责端对端通信,即在网络源和目标系统之间协调通信。在IP协议栈中这是TCP(一种传输协议)和UDP(用户数据包协议)所在的协议层。
  在第四层中,TCP和UDP标题包含端口号(portnumber),它们可以唯一区分每个数据包包含哪些应用协议(例如HTTP、FTP等)。端点系统利用这种信息来区分包中的数据,尤其是端口号使一个接收端计算机系统能够确定它所收到的IP包类型,并把它交给合适的高层软件。端口号和设备IP地址的组合通常称作“插口(socket)”。
  1和255之间的端口号被保留,他们称为“熟知”端口,也就是说,在所有主机TCP/I
P协议栈实现中,这些端口号是相同的。除了“熟知”端口外,标准UNIX服务分配在256到1024端口范围,定制的应用一般在1024以上分配端口号.
  分配端口号的最近清单可以在RFc1700”Assigned Numbers”上找到。TCP/UDP端
口号提供的附加信息可以为网络交换机所利用,这是第4层交换的基础。
  "熟知"端口号举例:
  
      应用协议     端口号
       FTP        20(数据)
                  21(控制)
       TELNET    23
       SMTP      25
       HTTP       80
       NNTP      119
       NNMP      16
                  162(SNMP traps)
  TCP/UDP端口号提供的附加信息可以为网络交换机所利用,这是第四层交换的基础。
  具有第四层功能的交换机能够起到与服务器相连接的“虚拟IP”(VIP)前端的作用。
每台服务器和支持单一或通用应用的服务器组都配置一个VIP地址。这个VIP地址被发送出去并在域名系统上注册。
  在发出一个服务请求时,第四层交换机通过判定TCP开始,来识别一次会话的开始。然后它利用复杂的算法来确定处理这个请求的最佳服务器。一旦做出这种决定,交换机就将会话与一个具体的IP地址联系在一起,并用该服务器真正的IP地址来代替服务器上的VIP地址。
  每台第四层交换机都保存一个与被选择的服务器相配的源IP地址以及源TCP 端口相
关联的连接表。然后第四层交换机向这台服务器转发连接请求。所有后续包在客户机与服务器之间重新影射和转发,直到交换机发现会话为止。
  在使用第四层交换的情况下,接入可以与真正的服务器连接在一起来满足用户制定的规则,诸如使每台服务器上有相等数量的接入或根据不同服务器的容量来分配传输流。

三,第四层交换的作用
  第四层交换的主要作用是提高服务器和服务器群的可靠性和可扩性。
  如果服务器速度跟不上,即使是具有最快速交换的网络也不能完全确保端到端的性能。可以想见高优先权的业务在这种QoS使能的网络中会因服务器中低优先权的业务队列而阻塞。在更糟的情况下,服务器甚至会丧失循环处理业务的能力。
  设计在服务器上的第四层交换的目的就是扩展过去服务器和应用中第二层和第三层交换的性能和业务流的管理功能。

四,第四层交换的优势
  第四层交换使用第三层和第四层信息包的报头信息,根据应用区间识别业务流,将整个区间段的业务流分配到合适的应用服务器进行处理。
  每个开放的区间与特定的服务器相关,为跟踪服务器,第四层交换使多个服务器支持的特殊应用,随服务器的增加而线性增强整体性能。同时,第四层交换通过减少对任何特定服务器的依赖性而提高应用的可靠性。
  第四层交换也要求端到端QoS,提高第二层和第三层交换一包接一包QoS传输的能力。例如,从级别高的用户来的业务或重要应用的网络业务流,可以分配给最快的I/O系统和CPU,而普通的业务就分配给性能较差的机器。

五,第四层交换与第二层、第三层交换
  如果第二层交换是网桥的再现,第三层交换是路由,那么,什么是第四层交换?第四层交换可以根据专门的应用进行流量排队,这为基于规则的服务质量机制提供了一条更可操作的途径。我们可以把第四层交换叫作“会话交换机”。
  a,第二层交换
  局域网交换技术是作为对共享式局域网提供有效的网段划分的解决方案而出现的,他可以使每个用户尽可能地分享到最大带宽。前文已经提到,交换技术是在OSI七层网络模型中的第二层,即数据链路层进行操作的,因此交换机对数据包的转发是建立在MAC地址--物理地址基础之上的,对于IP网络协议来说,它是透明的,即交换机在转发数据包时,不知道也无须知道信源机和信宿机的IP地址,只须其物理地址即MAC地址。交换机在操作过程当中会不断的收集资料去建立它本身的一个地址表,这个表相当简单,它说明了某个MAC地址是在哪个端口上被发现的,所以当交换机收到一个TCP/IP封包时,他便会看一下该数据包的标签部分的目的MAC地址,核对一下自己的地址表以确认该从哪个端口把数据包发出去,由于这个过程比较简单,加
上今天这功能由ASIC硬件进行,因此速度相当高,一般只需几十微秒,交换机便可决定一个IP封包该往那里送。值得一提的是:万一交换机收到一个不认识的封包,就是说如果目的地MAC地址不能在地址表中找到时,交换机会把IP封包"扩散"出去,即把它从每一个端口中送出去,就好象交换机在收到一个广播封包时一样处理。二层交换机的弱点正是它处理广播封包的手法太不有效,比方说,当一个交换机收到一个从TCP/IP工作站上发出来的广播封包时,他便会把该封包传到所有其他端口去,哪怕有些端口上连的是IPX或DECnet工作站!这样一来,非TCP/IP接点的带宽便会受到负面的
影响,就算同样的TCP/IP接点,除非他们的子网跟发送那个广播封包的工作站的子网相同,否则他们也会无原无故地收到一些与他们毫不相干的网络广播,整个网络的效率因此会大打折扣。 
  b,第三层交换
  假设主机A跟主机B以前曾通过交换机通信,中间的交换机如支持第三层交换的话,他便会把A和B的IP地址及他们的MAC地址记录下来,当其它主机如C要和A或B通信时,针对C所发出的寻址封包,第三层交换机会不假思索的送C一个回覆封包告诉他A或B的MAC地址,以后C当然就会用A或B的MAC地址"直接"和他通信。因为通信双方完全没有通过路由器这样的第三者,所以那怕A、B和C属不同的子网,他们间均可直接知道对方的MAC地址来通信,更重要的是,第三层交换机并没有像其他交换器般把广播封包扩散,第三层交换机之所以叫三层交换器便是因为他们能看懂三层信息,
如IP地址、ARP等。因此,三层交换器便能洞悉某广播封包目的何在,而在没有把他扩散出去的情形下,满足了发出该广播封包的人的需要,(不管他们在任何子网里)。如果认为第三层交换机就是路由器,那也应称作超高速反传统路由器,因为第三层交换器没做任何"拆打"数据封包的工作,所有路过他的封包都不会被修改并以交换的速度传到目的地。
  相比之下,路由器是在OSI七层网络模型中的第三层--网络层操作的,它在网络中,
收到任何一个数据包(包括广播包在内),都要将该数据包第二层(数据链路层)的信息去掉(称为"拆包"),查看第三层信息(IP地址)。然后,根据路由表确定数据包的路由,再检查安全访问表;若被通过,则再进行第二层信息的封装(称为"打包"),最后将该数据包转发。如果在路由表中查不到对应MAC地址的网络地址,则路由器将向源地址的站点返回一个信息,并把这个数据包丢掉。
  与交换机相比,路由器显然能够提供构成企业网安全控制策略的一系列存取控制机制。由于路由器对任何数据包都要有一个"拆打"过程,即使是同一源地址向同一目的地址发出的所有数据包,也要重复相同的过程。这导致路由器不可能具有很高的吞吐量,也是路由器成为网络瓶颈的原因之一.  端到端性能和服务质量要求对所有联网设备的负载进行细致的均衡,以保证客户机与服务器之间数据平滑地流动。第二层与第三层交换产品在解决局域网和互联网络的带宽及容量问题上发挥了很好的作用,但是,这可能还不够,还需要更多的性能,而这正是第四层交换的用武之地。
  第二层交换连接用户和网络,在子网中指引业务流,第三层交换或路由器将包从一个子网传到另一个子网,第四层交换将包传到终端服务器。第四层交换是网络基础结构中的重要因素,它使得服务器容量随网络带宽增加而增加。
  从操作方面来看,第四层交换是稳固的,因为它将包控制在从源端到宿端的区间中。另一方面,路由器或第三层交换,只针对单一的包进行处理,不清楚上一个包从哪来、也不知道下一个包的情况。它们只是检测包报头中的TCP端口数字,根据应用建立优先级队列。路由器根据链路和网络可用的节点决定包的路由。第四层则是在可用的服务器和性能基础上先确定区间。

六,第四层交换与服务器集群
    在第四层交换和服务器集群技术(如Microsoft的Wolfpack)之间有一些共同的
功能。它们都能提供服务品负载平衡和故障防护功能,尽管许多集群技术的实现支持横跨多个服务器的应用程序的负载平衡。这二种技术的不同之处在于:集群功能经常被密地集成在服务器操作系统中,因此是厂家专有的。被嵌入到操作系统中意味着集群技术能支持文件系统共享和紧密的服务器资源滥测,并允许更快的服务器容错。另一方面,第四层交换是建立在标准IP协议族之上的。因此,它使不同厂商,不同操作系统的服务器为负载平衡和增强可靠性而组成一个“松散耦合”服务器集群,这两种技术产不是彼盯对立的。服务器集群能利用第四层交换来同时提高应用程序扩展性和服务器可用性。
  在服务器集群中使用第四层交换可以在交换机上利用第四层交换的功能来保证服务器集群中各服务器的负载平衡。第四层交换可以使人们对许多备份服务器进行毫无顾忌的选择,同时,还会有一系列服务器在提供同样的服务,这样就可以使各服务器上的通信量负载达到平衡。
  到目前为止,能使负载达到平衡的唯一方法是轮换主机地址,但问题在于预测或控制每一服务器将要获得的负载是一件很不容易的事情,这简直太原始了,并不能满足用户对第四层交换的要求。应用第四层交换,采用先进的应用分配算法,能更好,更智能实现负载平衡。根据所需负载均衡的颗粒度,第四层交换机可以利用多种方法将应用会话分配到服务器上。这些方法包括求权数最小接入的简单加权循环、测量往返时延和服务器自身的闭合环路反馈等等。
  闭合环路反馈是最先进的方法,它利用可用内存、I/O中断和CPU利用率等特定的系
统信息,这些信息可以为适配器驱动器和第四层交换机自动获取。目前的闭合环路反馈机制要求在每台服务器上安装软件代理。

七,如何选用合适的第四层交换
  a,速度
  为了在企业网中行之有效,第四层交换必须提供与第三层线速路由器可比拟的性能。也就是说,第四层交换必须在所有端口以全介质速度操作,即使在多个千兆以太网连接上亦如此。千兆以太网速度等于以每秒1488000 个数据包的最大速度路由(假定最坏的情形,即所有包为以及网定义的最小尺寸,长64字节)。
  b,服务器容量平衡算法
  
  依据所希望的容量平衡间隔尺寸,第四层交换机将应用分配给服务器的算法有很多种,有简单的检测环路最近的连接、检测环路时延或检测服务器本身的闭环反馈。在所有的预测中,闭环反馈提供反映服务器现有业务量的最精确的检测。
  c,表容量
  应注意的是,进行第四层交换的交换机需要有区分和存贮大量发送表项的能力。交换机在一个企业网的核心时尤其如此。许多第二/ 三层交换机倾向发送表的大小与网络设备的数量成正比。对第四层交换机,这个数量必须乘以网络中使用的不同应用协议和会话的数量。因而发送表的大小随端点设备和应用类型数量的增长而迅速增长。第四层交换机设计者在设计其产品时需要考虑表的这种增长。大的表容量对制造支持线速发送第四层流量的高性能交换机至关重要.
  d,冗余
  第四层交换机内部有支持冗余拓扑结构的功能。在具有双链路的网卡容错连接时,就可能建立从一个服务器到网卡,链路和服务器交换器的完全冗余系统。

八,介绍几种第四层交换产品
  Berkeley Networks公司的exponeNT e4和Alteon Networks公司的ACEswith 180两款
第四层交换产品具有突出的性能和灵活性,能够比第二层和第三层交换机做出更智能的转发决定。由于把包头查询的代码嵌入到交换机中的专用集成电路(ASIC)中去实现上述功能,几乎不会造成任何延时。这两家厂商的交换机都能实现10M、100M和千兆以太网功能,但是Berkeley的交换机是设计用于企业应用的,而Alteon交换机则是用于拥有大量Web或FTP服务器的机构的。
  Alteon的第四层交换技术能通过对服务器的性能和运行状况的实时监测,根据不同
服务器的健康状况,将来访的数据流以经济高效的方式分配到合适的服务器上。同时,Alteon的第四层交换技术具有Web高速缓存重定向功能,能把指定发往远程Internet主机的HTTP通信拦截,并将这些通信重新定向到本地的高速缓存服务器上,从而大大加快了访问Internet的速度,并节省了大量宝贵的广域网带宽。而且这对于用户和信息提供者来说是完全透明的,不需要用户和信息提供者做任何的设置。
  Cabletron公司的SmartSwitch Router和Torrent NetworkingTechnologies公司推出
的IP9000 Gigabit Router 也是具有第四层交换功能的产品。其中SmartSwitch Router可以实现骨干网从常规第三层交换向全面的第三、第四层交换功能的升级转换,其独特的广域网集成能力以及基于第四层交换的访问控制能力对于网络数据传输安全、有序地进行发挥了关键作用。此外,Cabletron Smart SwitchRouter基于第四层交换的QoS功能为特定业务应用数据交换提供了不同级别的优先处理能力。

九,第四层交换与单功能负载均衡产品
  目前一般的单功能负载均衡产品可以每秒连接400到800个接入。而同时具有第二层和第四层功能的新一代产品(使用定制的专用集成电路的基于硬件的负载均衡功能)的连接速度则超过了每秒10万次接入。
  第四层交换机在形式和功能上与专用负载均衡器完全不同。传统基于硬件的负载均衡器是速度为45Mbps的优化的两端口设备。而第四层交换机是设计用于高速Intranet应用的,它支持100Mbps或千兆位接口。
  
  第四层交换除了负载均衡功能外还支持其它功能,如基于应用类型和用户ID的传输流控制功能。采用多级排队技术,第四层交换机可以根据应用来标记传输流以及为传输流分配优先级。此外,第四层交换机直接安放在服务器前端,它了解应用会话内容和用户权限,因而使它成为了防止非授权访问服务器的理想平台。

十,第四层交换方案
  在本方案中,通过采用Alteon的第四层交换机来实现Web Server的负载均衡。
  HTTP是Internet中最重要的一种应用,目前Internet上广泛使用的Web Server,采
用的是多进程技术,占用系统资源多,效率较低,一般一台Web Server只能承受几百个并发用户。采用第四层交换机可以很好地解决Web Server的扩展性问题,提高Web Server系统的可靠性,并在WebServer之间合理分配负载。
  Alteon的第四层交换机监测Web Server的可用性,包括物理连接、Web Server主机
、HTTP Server本身的健康状况,当发现某台Web Server不能提供Web 服务时,交换机自动把Web 请求分配到好的两台Web Server。Alteon第四层交换机还可以通过设置每台Web Server能承受的最大会话数、设置溢出Web Server、备份Web Server等方法来进一步保证Web系统的可靠性。
  Web Server在同一局域网内实现负载均衡时采用多种负载均衡算法,包括Least
Connection、Round Robin、MinMiss和Hash算法,以及对算法的加权等等。
  当Web Server不在同一局域网内时,利用Alteon交换机的GlobalLoad Balance技术
来实现负载分担的合理性问题。

交换网络的路由技术 

交换是当前网络技术发展的方向。路由技术是交换网络的重要组成部分。交换网络中路由技术选用得正确与否,将直接影响到网络的整体性能的好坏。因此路由技术越来越受到生产厂家与网络设计人员的重视。
一、三种路由技术
  目前交换网络中的路由技术有三种,其中第一种是最为保守的方法,即第三层的路由器与第二层交换机相结合的方法。第二层交换机严格限制于桥结构,用于同一虚拟网内的不同节点之间的数据交换,在OSI参考模型的第二层,即数据链路层实现虚拟LAN的功能,将第三层的功能留给路由器实现,由路由器完成虚拟网络之间的数据传输与建立LAN与企业主干网连接的工作。
  第二种方法采用分布式路由技术。其特点是它使用多层交换机,将第二层的桥与第三层的路由结合在一起,有的文献也将多层交换机称之为第三层交换机。它本身所具有的路由功能支持虚拟LAN,并支持大多数同一虚拟网内或不同虚拟网之间节点的通信,减少了工作组与部门之间所使用的路由器的数目。但它仍然不能完全摆脱使用传统路由器,这是因为多层交换机只能提供高档路由器所能提供的协议、安全、交通管理及与WAN连接功能的子集。如CISCO公司7000系列路由器能够处理12种协议并支持点对点、电路交换与信元交换的广域网通信,而Alantec公司生产的Powerhub多层交换机却只能处理三种协议ECnet、IP与IPX,并且没有WAN接口。因此,多层交换机网络中需要使用路由器作为广域网的网关,并完成较为复杂的路由功能。
  交换网中的第三种路由技术则采用了一种全新的结构:路由服务器与边界交换机相结合。我们知道,传统的路由器完成信息包的转发与路由选择两项工作。而基于路由服务器的网络则由两个独立的设备分别完成上述两项功能:边界交换机完成信息包的转发,而路由信息的确定由价格较为昂贵的路由服务器完成。边界交换机只有在自己的地址表中找不到目标节点的地址时才访问路由服务器,此时路由器对之响应一个正确的地址,交换机再将该信息缓存备用。需要指出的是,目前路由服务器与交换机之间的通信协议还不统一,不同厂家的产品还不兼容。
二、比较与评价
  上述三种路由技术各有特色,网络设计人员可根据实际情况加以选用。为使人们对它们有更好的了解,我们分以下四个方面对它们进行比较。
1.组网规模
  网络的大小是选择何种路由技术组网的决定性因素。第二层交换机与传统路由器相结合的办法适用于较小规模的网络,其特点是经济实用。但当主干网扩展成比较大的网络时,第二层虚拟LAN的开销将明显增大。
  随着主干网的扩展,多层交换机的智能优势得到充分发挥,由于它仅向那些属于某一特定子网的网段转发广播,因此减少了主干网上广播交通的数量。由于多层交换机组成的虚拟网络具有过滤功能,并能节省主干网的带宽与端站点的时钟,因此虚拟网络的安全性较好。另外,它与第一种方法相比,由于交换机可在工作组与部门范围内同时负责交换与路由选径工作,故节省了传统路由器使用的数目。分布式路由器法与路由服务器也比较适用于大型的分布式网络。
2.延迟
  网络延迟的增加会导致网络性能的下降,网络延迟的大小一般与设备在转发交通之前所必须处理的作业的大小成正比。对于第二层的以太交换机来讲,由于第二层虚拟网本质上使用桥而不使用路由器,因此相对速度较快,当执行一个简单的MAC地址寻找时,一个信息包(64字节)的延迟小于100微秒。第三层路由器的使用增加了头标的寻找及某些算法的执行,因此大大增加了信息包的延迟,其延迟时间高达5毫秒。
  可见,对于由第二层交换机与第三层路由器结合组成的网络,当交通经由交换机时具有相当好的性能;当交通从一个交换机经由路由器流向另一个交换机时性能较差。
  几乎所有的第二层交换机与软件配合使用都能将节点组成虚拟网络(广播域),并以此改善网络的性能。同一虚拟网内节点之间的交通在MAC层进行交换,延迟较小。不同虚拟网之间的节点交换信息时,信息包传递要经过路由器,此时网络延迟较大。
  分布路由技术允许交换机在第三层协议子网ID虚拟网间传递信息,能克服上述路由器所形成的瓶颈。
  路由服务器法使用边界交换机做出路径的选择。偶而在边界交换机不知道发送目标地址时,才向路由服务器发询问信息包,此时才会出现寻径的延迟。正常情况下,交换机可以直接在缓存地址表中查找地址,之后可直接转发信息包,此种情况下产生的延迟与MAC层交换机的延迟基本相同。
3.管理
  路由信息存放于网络中各个路由器中,每种协议都有相应的表列。网管人员必须逐个对路由器进行配置,其中包括滤波器的设置,增加、修改路由表等。加之人机界面是基于文本的界面,因此当企业网扩展到较大规模时,路由器的管理与配置是相当费时的。
  分布式路由技术不利的一面是其管理的开销与路由及交换表数目的增加呈指数增加趋势。为了克服这一缺点,生产商家拟采用以下措施:在中心控制台制定交通管制策略,并通过网络自动传播,从而避免对每个设备逐一配置,并增加图形人机界面。
  路由服务器的特点是易于管理,只需对一个路由服务器的配置就可提供高质量的服务与虚拟网络的管理。如Cabletron公司的Securefast管理程序就能够允许网管人员利用屏幕,对不同组的用户分配访问权限,通过执行该软件将访问权限通知所有的交换机。
  路由服务器方法的另一个优点是,允许网管人员透明地制定交通管理策略,不必关心端站用户的类型。例如,网管人员可将以太交换机上的节点与ATM上的服务器分配给同一个虚拟局域网,而不必输入以太节点的MAC或IP地址,也不必输入ATM节点的VPI/VCI。 4.价格
  价格是人们组网考虑的另一个主要因素。以下作者给出几个公司生产的50、250、500个端口三种路由方式产品的平均每个端口价格的对比情况(见表1~2)。这里每个端口的价格是用端口的数目去除网络设备总价格所得的结果,网络设备包括以太交换机、ATM交换机、路由服务器与第三层路由器。
  路由服务器组网方式只有Newbridge公司给出价格,其50、250、500个端口设备每个端口的平均价格分别为1920、1520与1435美元。
  从上面给出的数据可以看出,基于第二层交换与路由器方式组网的方案价格最便宜,分布式路由技术组网价格最高,而路由服务器方式组网价格适中。从中我们还可发现,使用第二层交换机与第三层路由器组网时,随着网络规模的扩大,平均每个端口的价格越来越小,路由服务器组网的情况与之类似。但分布式路由器组网方式平均每个端口的价格受网络规模影响不大。
三、与ATM主干的连接
  由于路由服务器与分布式路由方式组成的交换LAN与ATM主干相连目前还没有统一的标准,故各公司提供的连接方式也不尽相同。
  常见的方法是将以太或令牌环局域网交换机的所有虚拟网的交通送往装有ATM接口卡的路由器,但这种作法的缺点是路由器将会成为整个网络的瓶颈,影响了网络的整体性能。
  较好的方法是,以太LAN交换机都备有各自的ATM接口,从而允许LAN交换机与ATM交换机直接建立连接,不必经由路由器,这是一个明显的改进。但不同虚拟网之间的数据传输仍需经过路由器,瓶颈依然存在。
  目前关于传统的交通在ATM上传输有两种标准:其一是ATM论坛制定
  的LAN仿真,另一种标准是国际计算机互连网络工程任务组IETF制定的ATM上的传统IP标准(IPOverATM)。LAN仿真运行于介质访问控制MAC层,它的最大好处是,能确保以太及令牌环的交通在不需对应用程序及人机界面做任何改变的情况下在ATM网上正常运行。IPOverATM标准与LAN仿真具有相同的目的,与LAN仿真不同的是,它只允许ATM交通运行于IP网络。但是,它们都没有彻底地解决不同虚拟网之间交通的传输,仍需要在不同虚拟网之间设有路由器:路由器将信元装配成信息包,完成路由选择,并在发送前再将信息包恢复成信元,这样做效率明显要低得多。为了消除路由器形成的瓶颈,ATM论坛制定了ATM上的多协议传输标准(MPOA),其目的是解决ATM上的多种协议的传输,这其中包括IP、IPX/SPX与Appletalk等。MPOA的不同虚拟网之间的路由交通是基于网络层的交通信息(如IP子网地址),以达到避免使用外部路由器的目的。

四、结论
  综上所述,三种路由器技术各有特点,各有所长,用户可根据自己的实际需要加以选择。需要强调的是,路由技术在当前,乃至于在可预见的未来,仍是交换网络的一个非常重要的组成部分,路由技术选择的正确与否会直接影响网络整体性能,必须予以足够的重视

交换机如何工作

交换技术是一个具有简化、低价、高性能和高端口密集特点的交换产品,体现了桥接技术的复杂交换技术在OSI参考模型的第二层操作。与桥接器不同的是交换机转发延迟很小,操作接近单局域网性能,远远超过了普通桥接互联网之间的转发性能。
交换技术允许共享型呵专用性大的局域网段进行带宽调整,以减轻局域网之间信息流通出现的瓶颈问题。现在已经有以太网、快速以太网、FDDI和ATM技术个交换产品。
三种交换技术
1。端口交换
端口交换技术最早出现在插槽式的集线器中,这类集线器的背板通常划分有多条以太网段,不用网桥或路由器连接,网络之间是互不相通的。以太主模块插入后通常被分配到某个背板的网段上,端口交换用于将以太模块的端口在背板凳多个网段之间进行分配、平衡。根据支持的程度,端口进行还可以细分为:
*模块交换:将整个模块进行网段迁移
*端口组交换:通常模块上的端口被划分为若干组,每组端口允许进行网段迁移。
*端口级交换:支持每个端口在不同网段之间进行迁移。这种交换技术是基于OSI第一层上完成的,具有灵活性和负载平衡的能力等优点.如果配置得当,那么还可以在一定程度进行容错,但没有改变共享传输介质的特点,因而不能称之为真正的交换.
2.帧交换
帧交换是目前应用最广泛的局域网交换技术,它通过对传统传输媒介进行微分段,提供并行传送的机制,以减小冲突域,获得高的带宽.一般来说每个公司的产品德实现技术均回游差异,但对网络帧的处理方式有一下几种:
*真通交换:提供线速处理能力,交换机只读出网络帧的前14个字节,便将网络帧转送到相应得断口上.
*贮存转发:通过对网络帧的读取进行验错和控制.
前一种方法的交换速度非常快,但缺乏对网络帧进行更高级的控制,缺乏智能性和安全性,同时也无法支持具有不同速率的端口的交换.因此,各厂商把后一种技术作为重点.
3.信元交换
ATM技术代表了网络和通信中众多难题的一剂"良药".ATM采用固定长度53个字节的信元交换.由于长度固定,因而便于用硬件实现.ATM采用专用的非差别连接,并行运行,可以通过一个交换机同时建立多个节点,但不会影响每个节点之间的通信能力.ATM还容许在源节点和目标节点之间的通信能力.ATM采用了统计时分电路进行复用,因而能大大提高通道德利用率.ATM的带宽可以达到25M、155M、622M甚至数GB的转送能力。

局域网交换机的种类及选择

局域网交换机根据使用的网络技术可以分为:
*以太网交换机
*令牌环交换机
*FDDI交换机
*ATM交换机
*快速以太网交换机交换机
如果按交换机应用领域来划分,可分为:
*台式交换机
*工作组交换机
*主干交换机
*企业级交换机
*分段交换机
*端口交换机
*网络交换机
局域网计算机是组成网络系统的核心设备。对用户而言,局域网交换机最主要的指标是端口的配置、数据、数据交换能力、包交换速度等因素。因此,在选择交换机时要注意一下事项“
1.交换端口的数量
2.交换端口的型号
3.系统的扩充能力
4.主干线的连接手段
5.交换机总交换能力
6.是否需要路由选择能力
7.是否需要热切换能力
8.是否需要容错能力
9.能否与现有设备兼容,顺利衔接
10.网络管理能力


三层交换技术解析2

简单地说,三层交换技术就是:二层交换技术+三层转发技术。它解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。
什么是三层交换
三层交换(也称多层交换技术,或IP交换技术)是相对于传统交换概念而提出的。众所周知,传统的交换技术是在OSI网络标准模型中的第二层--数据链路层进行操作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发。简单地说,三层交换技术就是:二层交换技术+三层转发技术。
三层交换技术的出现,解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。

三层交换原理

一个具有三层交换功能的设备,是一个带有第三层路由功能的第二层交换机,但它是二者的有机结合,并不是简单地把路由器设备的硬件及软件叠加在局域网交换机上。
其原理是:假设两个使用IP协议的站点A、B通过第三层交换机进行通信,发送站点A在开始发送时,把自己的IP地址与B站的IP地址比较,判断B站是否与自己在同一子网内。若目的站B与发送站A在同一子网内,则进行二层的转发。若两个站点不在同一子网内,如发送站A要与目的站B通信,发送站A要向“缺省网关”发出ARP(地址解析)封包,而“缺省网关”的IP地址其实是三层交换机的三层交换模块。当发送站A对“缺省网关”的IP地址广播出一个ARP请求时,如果三层交换模块在以前的通信过程中已经知道B站的MAC地址,则向发送站A回复B的MAC地址。否则三层交换模块根据路由信息向B站广播一个ARP请求,B站得到此ARP请求后向三层交换模块回复其MAC地址,三层交换模块保存此地址并回复给发送站A,同时将B站的MAC地址发送到二层交换引擎的MAC地址表中。从这以后,当A向B发送的数据包便全部交给二层交换处理,信息得以高速交换。由于仅仅在路由过程中才需要三层处理,绝大部分数据都通过二层交换转发,因此三层交换机的速度很快,接近二层交换机的速度,同时比相同路由器的价格低很多。

三层交换机种类

三层交换机可以根据其处理数据的不同而分为纯硬件和纯软件两大类。

(1)纯硬件的三层技术相对来说技术复杂,成本高,但是速度快,性能好,带负载能力强。其原理是,采用ASIC芯片,采用硬件的方式进行路由表的查找和刷新。
当数据由端口接口芯片接收进来以后,首先在二层交换芯片中查找相应的目的MAC地址,如果查到,就进行二层转发,否则将数据送至三层引擎。在三层引擎中,ASIC芯片查找相应的路由表信息,与数据的目的IP地址相比对,然后发送ARP数据包到目的主机,得到该主机的MAC地址,将MAC地址发到二层芯片,由二层芯片转发该数据包。

(2)基于软件的三层交换机技术较简单,但速度较慢,不适合作为主干。其原理是,采用CPU用软件的方式查找路由表。
当数据由端口接口芯片接收进来以后,首先在二层交换芯片中查找相应的目的MAC地址,如果查到,就进行二层转发否则将数据送至CPU。CPU查找相应的路由表信息,与数据的目的IP地址相比对,然后发送ARP数据包到目的主机得到该主机的MAC地址,将MAC地址发到二层芯片,由二层芯片转发该数据包。因为低价CPU处理速度较慢,因此这种三层交换机处理速度较慢。

市场产品选型

近年来宽带IP网络建设成为热点,下面以适合定位于接入层或中小规模汇聚层的第三层交换机产品为例,介绍一些三层交换机的具体技术。在市场上的主流接入第三层交换机,主要有Cisco的Catalyst2948GL3、Extreme的Summit24和AlliedTelesyn的Rapier24等,这几款三层交换机产品各具特色,涵盖了三层交换机大部分应用特性。当然在选择第三层交换机时,用户可根据自己的需要,判断并选择上述产品或其他厂家的产品,如北电网络的Passport/Acceler系列、原Cabletron的SSR系列(在Cabletron一分四后,大部分SSR三层交换机已并入Riverstone公司)、Avaya的CajunM系列、3Com的Superstack34005系列等。此外,国产网络厂商神州数码网络、TCL网络、上海广电应确信、紫光网联、首信等都已推出了三层交换机产品。下面就其中三款产品进行介绍,使您能够较全面地了解三层交换机,并针对自己的情况选择合适的机型。

Cisco Catalyst 2948GL3交换机结合业界标准IOS提供完整解决方案,在版本12.0(10)以上全面支持IOS访问控制列表ACL,配合核心Catalyst6000,可完成端到端全面宽带城域网的建设(Catalyst6000使用MSFC模块完成其多层交换服务,并已停止使用RSM路由交换模块,IOS版本6.1以上全面支持ACL)。

Extreme公司三层交换产品解决方案,能够提供独特的以太网带宽分配能力,切割单位为500kbps或200kbps,服务供应商可以根据带宽使用量收费,可实现音频和视频的固定延迟传输。

AlliedTelesyn公司Rapier24三层交换机提供的PPPoE特性,丰富和完善了用户认证计费手段,可适合多种接入网络,应用灵活,易于实现业务选择,同时又保护目前用户的已有投资,另可配合NAT(网络地址转换)和DHCP的Server等功能,为许多服务供应商看好。

总之,三层交换机从概念的提出到今天的普及应用,虽然只历经了几年的时间,但其扩展的功能也不断结合实际应用得到丰富。随着ASIC硬件芯片技术的发展和实际应用的推广,三层交换的技术与产品也会得到进一步发展。


交换机和路由器的区别

一、前言
  计算机网络往往由许多种不同类型的网络互连连接而成。如果几个计算机网络只是在物理上连接在一起,它们之间并不能进行通信,那么这种“互连”并没有什么实际意义。因此通常在谈到“互连”时,就已经暗示这些相互连接的计算机是可以进行通信的,也就是说,从功能上和逻辑上看,这些计算机网络已经组成了一个大型的计算机网络,或称为互联网络,也可简称为互联网、互连网。
  将网络互相连接起来要使用一些中间设备(或中间系统),ISO的术语称之为中继(relay)系统。根据中继系统所在的层次,可以有以下五种中继系统:
  1.物理层(即常说的第一层、层L1)中继系统,即转发器(repeater)。

  2.数据链路层(即第二层,层L2),即网桥或桥接器(bridge)。

  3.网络层(第三层,层L3)中继系统,即路由器(router)。

  4.网桥和路由器的混合物桥路器(brouter)兼有网桥和路由器的功能。

  5.在网络层以上的中继系统,即网关(gateway).

  当中继系统是转发器时,一般不称之为网络互联,因为这仅仅是把一个网络扩大了,而这仍然是一个网络。高层网关由于比较复杂,目前使用得较少。因此一般讨论网络互连时都是指用交换机和路由器进行互联的网络。本文主要阐述交换机和路由器及其区别。 二、交换机和路由器

  “交换”是今天网络里出现频率最高的一个词,从桥接到路由到ATM直至电话系统,无论何种场合都可将其套用,搞不清到底什么才是真正的交换。其实交换一词最早出现于电话系统,特指实现两个不同电话机之间话音信号的交换,完成该工作的设备就是电话交换机。所以从本意上来讲,交换只是一种技术概念,即完成信号由设备入口到出口的转发。因此,只要是和符合该定义的所有设备都可被称为交换设备。由此可见,“交换”是一个涵义广泛的词语,当它被用来描述数据网络第二层的设备时,实际指的是一个桥接设备;而当它被用来描述数据网络第三层的设备时,又指的是一个路由设备。   我们经常说到的以太网交换机实际是一个基于网桥技术的多端口第二层网络设备,它为数据帧从一个端口到另一个任意端口的转发提供了低时延、低开销的通路。

  由此可见,交换机内部核心处应该有一个交换矩阵,为任意两端口间的通信提供通路,或是一个快速交换总线,以使由任意端口接收的数据帧从其他端口送出。在实际设备中,交换矩阵的功能往往由专门的芯片(ASIC)完成。另外,以太网交换机在设计思想上有一个重要的假设,即交换核心的速度非常之快,以致通常的大流量数据不会使其产生拥塞,换句话说,交换的能力相对于所传信息量而无穷大(与此相反,ATM交换机在设计上的思路是,认为交换的能力相对所传信息量而言有限)。   虽然以太网第二层交换机是基于多端口网桥发展而来,但毕竟交换有其更丰富的特性,使之不但是获得更多带宽的最好途径,而且还使网络更易管理。

  而路由器是OSI协议模型的网络层中的分组交换设备(或网络层中继设备),路由器的基本功能是把数据(IP报文)传送到正确的网络,包括:

  1.IP数据报的转发,包括数据报的寻径和传送;

  2.子网隔离,抑制广播风暴;

  3.维护路由表,并与其他路由器交换路由信息,这是IP报文转发的基础。

  4.IP数据报的差错处理及简单的拥塞控制;

  5.实现对IP数据报的过滤和记帐。

  对于不同地规模的网络,路由器的作用的侧重点有所不同。

  在主干网上,路由器的主要作用是路由选择。主干网上的路由器,必须知道到达所有下层网络的路径。这需要维护庞大的路由表,并对连接状态的变化作出尽可能迅速的反应。路由器的故障将会导致严重的信息传输问题。

  在地区网中,路由器的主要作用是网络连接和路由选择,即连接下层各个基层网络单位--园区网,同时负责下层网络之间的数据转发。   在园区网内部,路由器的主要作用是分隔子网。早期的互连网基层单位是局域网(LAN),其中所有主机处于同一逻辑网络中。随着网络规模的不断扩大,局域网演变成以高速主干和路由器连接的多个子网所组成的园区网。在其中,处个子网在逻辑上独立,而路由器就是唯一能够分隔它们的设备,它负责子网间的报文转发和广播隔离,在边界上的路由器则负责与上层网络的连接。

三、第二层交换机和路由器的区别

  传统交换机从网桥发展而来,属于OSI第二层即数据链路层设备。它根据MAC地址寻址,通过站表选择路由,站表的建立和维护由交换机自动进行。路由器属于OSI第三层即网络层设备,它根据IP地址进行寻址,通过路由表路由协议产生。交换机最大的好处是快速,由于交换机只须识别帧中MAC地址,直接根据MAC地址产生选择转发端口算法简单,便于ASIC实现,因此转发速度极高。但交换机的工作机制也带来一些问题。   1.回路:根据交换机地址学习和站表建立算法,交换机之间不允许存在回路。一旦存在回路,必须启动生成树算法,阻塞掉产生回路的端口。而路由器的路由协议没有这个问题,路由器之间可以有多条通路来平衡负载,提高可靠性。   2.负载集中:交换机之间只能有一条通路,使得信息集中在一条通信链路上,不能进行动态分配,以平衡负载。而路由器的路由协议算法可以避免这一点,OSPF路由协议算法不但能产生多条路由,而且能为不同的网络应用选择各自不同的最佳路由。

  3.广播控制:交换机只能缩小冲突域,而不能缩小广播域。整个交换式网络就是一个大的广播域,广播报文散到整个交换式网络。而路由器可以隔离广播域,广播报文不能通过路由器继续进行广播。

  4.子网划分:交换机只能识别MAC地址。MAC地址是物理地址,而且采用平坦的地址结构,因此不能根据MAC地址来划分子网。而路由器识别IP地址,IP地址由网络管理员分配,是逻辑地址且IP地址具有层次结构,被划分成网络号和主机号,可以非常方便地用于划分子网,路由器的主要功能就是用于连接不同的网络。   5.保密问题:虽说交换机也可以根据帧的源MAC地址、目的MAC地址和其他帧中内容对帧实施过滤,但路由器根据报文的源IP地址、目的IP地址、TCP端口地址等内容对报文实施过滤,更加直观方便。

  6.介质相关:交换机作为桥接设备也能完成不同链路层和物理层之间的转换,但这种转换过程比较复杂,不适合ASIC实现,势必降低交换机的转发速度。因此目前交换机主要完成相同或相似物理介质和链路协议的网络互连,而不会用来在物理介质和链路层协议相差甚元的网络之间进行互连。而路由器则不同,它主要用于不同网络之间互连,因此能连接不同物理介质、链路层协议和网络层协议的网络。路由器在功能上虽然占据了优势,但价格昂贵,报文转发速度低。   近几年,交换机为提高性能做了许多改进,其中最突出的改进是虚拟网络和三层交换。

  划分子网可以缩小广播域,减少广播风暴对网络的影响。路由器每一接口连接一个子网,广播报文不能经过路由器广播出去,连接在路由器不同接口的子网属于不同子网,子网范围由路由器物理划分。对交换机而言,每一个端口对应一个网段,由于子网由若干网段构成,通过对交换机端口的组合,可以逻辑划分子网。广播报文只能在子网内广播,不能扩散到别的子网内,通过合理划分逻辑子网,达到控制广播的目的。由于逻辑子网由交换机端口任意组合,没有物理上的相关性,因此称为虚拟子网,或叫虚拟网。虚拟网技术不用路由器就解决了广播报文的隔离问题,且虚拟网内网段与其物理位置无关,即相邻网段可以属于不同虚拟网,而相隔甚远的两个网段可能属于不同虚拟网,而相隔甚远的两个网段可能属于同一个虚拟网。不同虚拟网内的终端之间不能相互通信,增强了对网络内数据的访问控制。   交换机和路由器是性能和功能的矛盾体,交换机交换速度快,但控制功能弱,路由器控制性能强,但报文转发速度慢。解决这个矛盾的最新技术是三层交换,既有交换机线速转发报文能力,又有路由器良好的控制功能。

四、第三层交换机和路由器的区别

  在第三层交换技术出现之前,几乎没有必要将路由功能器件和路由器区别开来,他们完全是相同的:提供路由功能正在路由器的工作,然而,现在第三层交换机完全能够执行传统路由器的大多数功能。作为网络互连的设备,第三层交换机具有以下特征:   1.转发基于第三层地址的业务流;

  2.完全交换功能;

  3.可以完成特殊服务,如报文过滤或认证;

  4.执行或不执行路由处理。

  第三层交换机与传统路由器相比有如下优点:

  1.子网间传输带宽可任意分配:传统路由器每个接口连接一个子网,子网通过路由器进行传输的速率被接口的带宽所限制。而三层交换机则不同,它可以把多个端口定义成一个虚拟网,把多个端口组成的虚拟网作为虚拟网接口,该虚拟网内信息可通过组成虚拟网的端口送给三层交换机,由于端口数可任意指定,子网间传输带宽没有限制。   2.合理配置信息资源:由于访问子网内资源速率和访问全局网中资源速率没有区别,子网设置单独服务器的意义不大,通过在全局网中设置服务器群不仅节省费用,更可以合理配置信息资源。

  3.降低成本:通常的网络设计用交换机构成子网,用路由器进行子网间互连。目前采用三层交换机进行网络设计,既可以进行任意虚拟子网划分,又可以通过交换机三层路由功能完成子网间通信,为此节省了价格昂贵的路由器。

  4.交换机之间连接灵活:作为交换机,它们之间不允许存在回路,作为路由器,又可有多条通路来提高可靠性、平衡负载。三层交换机用生成树算法阻塞造成回路的端口,但进行路由选择时,依然把阻塞掉的通路作为可选路径参与路由选择。 五、结论

  综上所述,交换机一般用于LAN-WAN的连接,交换机归于网桥,是数据链路层的设备,有些交换机也可实现第三层的交换。路由器用于WAN-WAN之间的连接,可以解决异性网络之间转发分组,作用于网络层。他们只是从一条线路上接受输入分组,然后向另一条线路转发。这两条线路可能分属于不同的网络,并采用不同协议。相比较而言,路由器的功能较交换机要强大,但速度相对也慢,价格昂贵,第三层交换机既有交换机线速转发报文能力,又有路由器良好的控制功能,因此得以广播应用。

局域网交换技术 

局域网交换技术
1.1 共享技术
所谓共享技术即在一个逻辑网络上的每一个工作站都处于一个相同的网段上。

以太网采用CSMA/CD 机制,这种冲突检测方法保证了只能有一个站点在总线上传输。如果有两个站点试图同时访问总

线并传输数据,这就意味着“冲突”发生了,两站点都将被告知出错。然后它们都被拒发,并等待一段时间以备重发。

这种机制就如同许多汽车抢过一座窄桥,当两辆车同时试图上桥时,就发生了“冲突”,两辆车都必须退出,然后再重

新开始抢行。当汽车较多时,这种无序的争抢会极大地降低效率,造成交通拥堵。

网络也是一样,当网络上的用户量较少时,网络上的交通流量较轻,冲突也就较少发生,在这种情况下冲突检测法效果

较好。当网络上的交通流量增大时,冲突也增多,同进网络的吞吐量也将显著下降。在交通流量很大时,工作站可能会被一

而再再而三地拒发。




1.2 交换技术

局域网交换技术是作为对共享式局域网提供有效的网段划分的解决方案而出现的,它可以使每个用户尽可能地分享到最大带宽。交换技术是在OSI 七层网络模型中的第二层,即数据链路层进行操作的,因此交换机对数据包的转发是建立在MAC(Media Access Control )地址--物理地址基础之上的,对于IP 网络协议来说,它是透明的,即交换机在转发数据包时,不知道也无须知道信源机和信宿机的IP 地址,只需知其物理地址即MAC 地址。交换机在操作过程当中会不断的收集资料去建立它本身的一个地址表,这个表相当简单,它说明了某个MAC 地址是在哪个端口上被发现的,所以当交换机收到一个TCP /IP 封包时,它便会看一下该数据包的目的MAC 地址,核对一下自己的地址表以确认应该从哪个端口把数据包发出去。由于这个过程比较简单,加上这功能由一崭新硬件进行--ASIC(Application Specific Integrated Circuit),因此速度相当快,一般只需几十微秒,交换机便可决定一个IP 封包该往那里送。值得一提的是:万一交换机收到一个不认识的封包,就是说如果目的地MAC 地址不能在地址表中找到时,交换机会把IP 封包"扩散"出去,即把它从每一个端口中送出去,就如交换机在处理一个收到的广播封包时一样。二层交换机的弱点正是它处理广播封包的手法不太有效,比方说,当一个交换机收到一个从TCP/IP 工作站上发出来的广播封包时,他便会把该封包传到所有其他端口去,哪怕有些端口上连的是IPX 或DECnet 工作站。这样一来,非TCP/IP 节点的带宽便会受到负面的影响,就算同样的TCP/IP 节点,如果他们的子网跟发送那个广播封包的工作站的子网相同,那么他们也会无原无故地收到一些与他们毫不相干的网络广播,整个网络的效率因此会大打折扣。从90 年代开始,出现了局域网交换设备。从网络交换产品的形态来看,交换产品大致有三种:端口交换、帧交换和信元交换。

(1)端口交换

端口交换技术最早出现于插槽式集线器中。这类集线器的背板通常划分有多个以太网段(每个网段为一个广播域)、各网段通过网桥或路由器相连。以太网模块插入后通常被分配到某个背板网段上,端口交换适用于将以太模块的端口在背板的多个网段之间进行分配。这样网管人员可根据网络的负载情况,将用户在不同网段之间进行分配。这种交换技术是基于OSI第一层(物理层)上完成的,它并没有改变共享传输介质的特点,因此并不是真正意义上的交换。

(2)帧交换

帧交换是目前应用的最广的局域网交换技术,它通过对传统传输媒介进行分段,提供并行传送的机制,减少了网络的碰撞冲突域,从而获得较高的带宽。不同厂商产品实现帧交换的技术均有差异,但对网络帧的处理方式一般有:存储转发式和直通式两种。存储转发式(Store-and-Forward :当一个数据包以这种技术进入一个交换机时,交换机将读取足够的信息,以便不仅能决定哪个端口将被用来发送该数据包,而且还能决定是否发送该数据包。这样就能有效地排除了那些有缺陷的网络段。虽然这种方式不及使用直通式产品的交换速度,但是它们却能排除由破坏的数据包所引起的经常性的有害后果。直通式Cut-Through :当一个数据包使用这种技术进入一个交换机时,它的地址将被读取。然后不管该数据包是否为错误的格式,它都将被发送。由于数据包只有开头几个字节被读取,所以这种方法提供了较多的交换次数。然而所有的数据包即使是那些可能已被破坏的都将被发送。直到接收站才能测出这些被破坏的包,并要求发送方重发。但是如果网络接口卡失效,或电缆存在缺陷;或有一个能引起数据包遭破坏的外部信号源,则出错将十分频繁。随着技术的发展,直通式交换将逐步被淘汰。在“直通式”交换方式中,交换机只读出网络帧的前几个字节,便将网络帧传到相应的端口上,虽然交换速度很快,但缺乏对网络帧的高级控制,无智能性和安全性可言,同时也无法支持具有不同速率端口的交换;而“存储转发”交换方式则通过对网络帧的读取进行验错和控制。联想网络的产品都采用“存储转发”交换方式。

(3)信元交换

信元交换的基本思想是采用固定长度的信元进行交换,这样就可以用硬件实现交换,从而大大提高交换速度,尤其适合语音、视频等多媒体信号的有效传输。目前,信元交换的实际应用标准是ATM (异步传输模式),但是ATM 设备的造价较为昂贵,在局域网中的应用已经逐步被以太网的帧交换技术所取代。

1.2.1 第二层交换技术

第二层的网络交换机依据第二层的地址传送网络帧。第二层的地址又称硬件地址(MAC 地址),第二层交换机通常提供很高的吞吐量(线速)、低延时(10 微秒左右),每端口的价格比较经济。第二层的交换机对于路由器和主机是“透明的”,主要遵从802.1d 标准。该标准规定交换机通过观察每个端口的数据帧获得源MAC 地址,交换机在内部的高速缓存中建立MAC 地址与端口的映射表。当交换机接受的数据帧的目的地址在该映射表中被查到,交换机便将该数据帧送往对应的端口。如果它查不到,便将该数据帧广播到该端口所属虚拟局域网(VLAN )的所有端口,如果有回应数据包,交换机便将在映射表中增加新的对应关系。当交换机初次加入网络中时,由于映射表是空的,所以,所有的数据帧将发往虚拟局域网内的全部端口直到交换机“学习”到各个MAC 地址为止。这样看来,交换机刚刚启动时与传统的共享式集线器作用相似的,直到映射表建立起来后,才能真正发挥它的性能。这种方式改变了共享式以太网抢行的方式,如同在不同的行驶方向上铺架了立交桥,去往不同方向的车可以同时通行,因此大大提高了流量。从虚拟局域网(VLAN )角度来看,由于只有子网内部的节点竞争带宽,所以性能得到提高。主机1 访问主机2 同时,主机3 可以访问主机4 。当各个部门具有自己独立的服务器时,这一优势更加明显。但是这种环境正发生巨大的变化,因为服务器趋向于集中管理,另外,这一模式也不适合Internet 的应用。不同虚拟局域网(VLAN )之间的通讯需要通过路由器来完成,另外为了实现不同的网段之间通讯也需要路由器进行互

连。路由器处理能力是有限的,相对于局域网的交换速度来说路由器的数据路由速度也是较缓慢的。路由器的低效率和长时延使之成为整个网络的瓶颈。虚拟局域网(VLAN )之间的访问速度是加快整个网络速度的关键,某些情况下(特别是Intranet ),划定虚拟局域网本身是一件困难的事情。第三层交换机的目的正在于此,它可以完成Intranet 中虚拟局域网(VLAN )之间的数据包以高速率进行转发。

1.2.2 VLAN 技术

在传统的局域网中,各站点共享传输信道所造成的信道冲突和广播风暴是影响网络性能的重要因素。通常一个IP 子网或者IPX 子网属于一个广播域,因此网络中的广播域是根据物理网络来划分的。这样的网络结构无论从效率和安全性角度来考虑都有所欠缺。同时,由于网络中的站点被束缚在所处的物理网络中,而不能够根据需要将其划分至相应的逻辑子网,因此网络的结构缺乏灵活性。为解决这一问题,从而引发了虚拟局域网(VLAN )的概念,所谓VLAN 是指网络中的站点不拘泥于所处的物理位置,而可以根据需要灵活地加入不同的逻辑子网中的一种网络技术。

VLAN 技术的基础

基于交换式以太网的VLAN

在交换式以太网中,利用VLAN 技术,可以将由交换机连接成的物理网络划分成多个逻辑子网。也就是说,一个VLAN中的站点所发送的广播数据包将仅转发至属于同一VLAN 的站点。而在传统局域网中,由于物理网络和逻辑子网的对应关系,因此任何一个站点所发送的广播数据包都将被转发至网络中的所有站点。在交换式以太网中,各站点可以分别属于不同的VLAN 。构成VLAN 的站点不拘泥于所处的物理位置,它们既可以挂接在同一个交换机中,也可以挂接在不同的交换机中。VLAN 技术使得网络的拓扑结构变得非常灵活,例如位于不同楼层的用户或者不同部门的用户可以根据需要加入不同的VLAN 。到目前为止,基于交换式以太网实现VLAN 主要有三种途径:基于端口的VLAN 、基于MAC 地址的VLAN 和基于IP 地址的VLAN 。

1、基于端口的VLAN

基于端口的VLAN 就是将交换机中的若干个端口定义为一个VLAN ,同一个VLAN 中的站点具有相同的网络地址,不同的VLAN 之间进行通信需要通过路由器。采用这种方式的VLAN 其不足之处是灵活性不好,例如当一个网络站点从一个端口移动到另外一个新的端口时,如果新端口与旧端口不属于同一个VLAN ,则用户必须对该站点重新进行网络地址配置,否则,该站点将无法进行网络通信。

2、基于MAC 地址的VLAN

在基于MAC 地址的VLAN 中,交换机对站点的MAC 地址和交换机端口进行跟踪,在新站点入网时根据需要将其划归至某一个VLAN ,而无论该站点在网络中怎样移动,由于其MAC 地址保持不变,因此用户不需要进行网络地址的重新配置。这种VLAN 技术的不足之处是在站点入网时,需要对交换机进行比较复杂的手工配置,以确定该站点属于哪一个VLAN 。

3、基于IP 地址的VLAN

在基于IP 地址的VLAN 中,新站点在入网时无需进行太多配置,交换机则根据各站点网络地址自动将其划分成不同的VLAN 。在三种VLAN 的实现技术中,基于IP 地址的VLAN 智能化程度最高,实现起来也最复杂。VLAN 作为一种新一代的网络技术,它的出现为解决网络站点的灵活配置和网络安全性等问题提供了良好的手段。虽然VLAN 技术目前还有许多问题有待解决,例如技术标准的统一问题、VLAN 管理的开销问题和VALN 配置的自动化问题等等。然而,随着技术的不断进步,上述问题将逐步加以解决,VLAN 技术也将在网络建设中得到更加广泛的应用,从而为提高网络的工作效率发挥更大的作用。事实上一个VLAN(虚拟局域网)就是一个广播域。为了避免在大型交换机上进行的广播所引起的广播风暴,可将连接到大型交换机上的网络划分为多个VLAN(虚拟局域网)。在一个VLAN(虚拟局域网)内,由一个工作站发出的信息只能发送到具有相同VLAN(虚拟局域网)号的其他站点。其它VLAN(虚拟局域网)的成员收不到这些信息或广播帧。

采用VLAN 有如下优势:

1. 抑制网络上的广播风暴;

2. 增加网络的安全性;

3. 集中化的管理控制。

这就是在局域网交换机上采用VLAN(虚拟局域网)技术的初衷,也确实解决了一些问题。但这种技术也引发出一些新的问题:随着应用的升级,网络规划/实施者可根据情况在交换式局域网环境下将用户划分在不同VLAN(虚拟局域网)上。但是VLAN(虚拟局域网)之间通信是不允许的,这也包括地址解析(ARP)封包。要想通信就需要用路由器桥接这些VLAN(虚拟局域网)。这就是VLAN(虚拟局域网)的问题:不用路由器是嫌它慢,用交换机速度快但不能解决广播风暴问题,在交换机中采用VLAN(虚拟局域网)技术可以解决广播风暴问题,但又必须放置路由器来实现VLAN(虚拟局域网)之间的互通。形成了一个不可逾越的怪圈。这就是网络的核心和枢纽路由器的问题。在这种网络系统集成模式中,路由器是核心。

路由器所起的作用是:

1.网段微化(网段之间通过路由器进行连接):

2. 网络的安全控制;

3. VLAN(虚拟局域网)间互连;

4. 异构网间的互连。

1.2.3 局域网瓶颈

1、 采用路由器作为网络的核心将产生的问题:

● 路由器增加了3 层路由选择的时间,数据的传输效率低;

● 增加、移动和改变节点的复杂性有增无减;

● 路由器价格昂贵、结构复杂;

● 增加子网/ VLAN(虚拟局域网)的互连意味着要增加路由器端口,投资也增大。

相比之下,路由器是在OSI 七层网络模型中的第三层--网络层操作的,它在网络中,收到任何一个数据包(包括广播包在内),都要将该数据包第二层(数据链路层)的信息去掉(称为"拆包"),查看第三层信息(IP 地址)。然后,根据路由表确定数据包的路由,再检查安全访问表;若被通过,则再进行第二层信息的封装(称为"打包"),最后将该数据包转发。如果在路由表中查不到对应MAC 地址的网络地址,则路由器将向源地址的站点返回一个信息,并把这个数据包丢掉。与交换机相比,路由器显然能够提供构成企业网安全控制策略的一系列存取控制机制。由于路由器对任何数据包都要有一个"拆打"过程,即使是同一源地址向同一目的地址发出的所有数据包,也要重复相同的过程。这导致路由器不可能具有很高的吞吐量,也是路由器成为网络瓶颈的原因之一。如果路由器的工作仅仅是在子网与子网间、网络与网络间交换数据包的话,我们可能会买到比今天便宜得多的路由器。实际上路由器的工作远不止这些,它还要完成数据包过滤、数据包压缩、协议转换、维护路由表、计算路由、甚至防火墙等许多工作。而所有这些都需要大量CPU 资源,因此使得路由器一方面价格昂贵,另一方面越来越成为网络瓶颈。

2、 提高路由器的硬件性能,无法解决路由器瓶颈问题:

提高路由器的硬件性能(采用更高速,更大容量的内存)并不足以改善它的性能。因为路由器除了硬件支撑外,其"复杂的处理与强大的功能"主要是通过软件来实现的,这必然使得它成为网络瓶颈。另外,当流经路由器的流量超过其吞吐能力时,将引起路由器内部的拥塞。持续拥塞不仅会使转发的数据包被延误,更严重的是使流经路由器的数据包丢失。这些都给网络应用带来极大的麻烦。路由器的复杂性还对网络的维护工作造成了沉重的负担。例如,要对网络上的用户进行增加、移动或改变时,配置路由器的工作将显得十分复杂。

(3 交换机结合路由器存在不足:

将交换机和路由器结合起来(这也是当今大多数企业所采用的网络解决方案),从功能上来讲是可行的。然而,存在显然不足,不足之出在于:从网络用户的角度看,整个网络被分为两种等级的性能:直接经过交换机处理的数据包享受着高速公路快速、稳定的传递性能;但是那些必须经过路由器的数据包只能使用慢速通路,当流量负荷严重时,便会产生另人头痛的延迟。交换机和路由器是网络中不同的设备,须分别购买、设置和管理,其花费必然要多于一个基于集成化的单一完整的解决方案的花费。

1.2.4 第三层交换技术

局域网交换机的引入,使得网络站点间可独享带宽,消除了无谓的碰撞检测和出错重发,提高了传输效率,在交换机中可并行地维护几个独立的、互不影响的通信进程。在交换网络环境下,用户信息只在源节点与目的节点之间进行传送,其他节点是不可见的。但有一点例外,当某一节点在网上发送广播或组播时,或某一节点发送了一个交换机不认识的MAC 地址封包时,交换机上的所有节点都将收到这一广播信息。整个交换环境构成一个大的广播域。点到点是在第二层快速、有效的交换,但广播风暴会使网络的效率大打折扣。交换机的速度实在快,比路由器快的多,而且价格便宜的多。可以说,在网络系统集成的技术中,直接面向用户的第一层接口和第二层交换技术方面已得到令人满意的答案。交换式局域网技术使专用的带宽为用户所独享,极大的提高了局域网传输的效率。但第二层交换也暴露出弱点:对广播风暴、异种网络互连、安全性控制等不能有效地解决。作为网络核心、起到网间互连作用的路由器技术却没有质的突破。当今绝大部分的企业网都已变成实施TCP/IP 协议的Web 技术的内联网,用户的数据往往越过本地的网络在网际间传送,因而,路由器常常不堪重负。传统的路由器基于软件,协议复杂,与局域网速度相比,其数据传输的效率较低。但同时它又作为网段(子网,VLAN)互连的枢纽,这就使传统的路由器技术面临严峻的挑战。随着Internet/Intranet 的迅猛发展和B/S(浏览器/服务器)计算模式的广泛应用,跨地域、跨网络的业务急剧增长,业界和用户深感传统的路由器在网络中的瓶颈效应。改进传统的路由技术迫在眉睫。一种办法是安装性能更强的超级路由器,然而,这样做开销太大,如果是建设交换网,这种投资显然是不合理的。

在这种情况下,一种新的路由技术应运而生,这就是第三层交换技术:第三层交换技术也称为IP 交换技术、高速路由技术等。第三层交换技术是相对于传统交换概念而提出的。众所周知,传统的交换技术是在OSI 网络标准模型中的第二层--数据链路层进行操作的,而第三层交换技术是在网络模型中的第三层实现了数据包的高b是一种利用第三层协议中的信息来加强第二层交换功能的机制。一个具有第三层交换功能的设备是一个带有第三层路由功能的第二层交换机,但它是二者的有机结合,并不是简单的把路由器设备的硬件及软件简单地叠加在局域网交换机上。从硬件的实现上看,目前,第二层交换机的接口模块都是通过高速背板/总线(速率可高达几十Gbit/s)交换数据的,在第三层交换机中,与路由器有关的第三层路由硬件模块也插接在高速背板/总线上,这种方式使得路由模块可以与需要路由的其他模块间高速的交换数据,从而突破了传统的外接路由器接口速率的限制(10Mbit/s---100Mbit/s)。在软件方面,第三层交换机也有重大的举措,它将传统的基于软件的路由器软件进行了界定,其作法是:

1 .对于数据封包的转发:如IP/IPX 封包的转发,这些有规律的过程通过硬件得以高速实现。

2 .对于第三层路由软件:如路由信息的更新、路由表维护、路由计算、路由的确定等功能,用优化、高效的软件实现。假设两个使用IP 协议的站点通过第三层交换机进行通信的过程,发送站点A 在开始发送时,已知目的站的IP 地址,但尚不知道在局域网上发送所需要的MAC 地址。要采用地址解析(ARP)来确定目的站的MAC 地址。发送站把自己的IP 地址与目的站的IP 地址比较,采用其软件中配置的子网掩码提取出网络地址来确定目的站是否与自己在同一子网内。若目的站B 与发送站A 在同一子网内,A 广播一个ARP 请求,B 返回其MAC 地址,A 得到目的站点B 的MAC 地址后将这一地址缓存起来,并用此MAC 地址封包转发数据,第二层交换模块查找MAC 地址表确定将数据包发向目的端口。若两个站点不在同一子网内,如发送站A 要与目的站C 通信,发送站A 要向"缺省网关"发出ARP(地址解析)封包,而"缺省网关"的IP 地址已经在系统软件中设置。这个IP 地址实际上对应第三层交换机的第三层交换模块。所以当发送站A 对"缺省网关"的IP 地址广播出一个ARP 请求时,若第三层交换模块在以往的通信过程中已得到目的站B 的MAC 地址,则向发送站A 回复B 的MAC 地址;否则第三层交换模块根据路由信息向目的站广播一个ARP 请求,目的站C 得到此ARP 请求后向第三层交换模块回复其MAC 地址,第三层交换模块保存此地址并回复给发送站A 。以后,当再进行A 与C 之间数据包转发时,将用最终的目的站点的MAC 地址封包,数据转发过程全部交给第二层交换处理,信息得以高速交换。

第三层交换具有以下突出特点:

1. 有机的硬件结合使得数据交换加速;

2. 优化的路由软件使得路由过程效率提高;

3. 除了必要的路由决定过程外,大部分数据转发过程由第二层交换处理;

4. 多个子网互连时只是与第三层交换模块的逻辑连接,不象传统的外接路由器那样需增加端口,保护了用户的投资。

第三层交换的目标是,只要在源地址和目的地址之间有一条更为直接的第二层通路,就没有必要经过路由器转发数据包。第三层交换使用第三层路由协议确定传送路径,此路径可以只用一次,也可以存储起来,供以后使用。之后数据包通过一条虚电路绕过路由器快速发送。第三层交换技术的出现,解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。当然,三层交换技术并不是网络交换机与路由器的简单叠加,而是二者的有机结合,形成一个集成的、完整的解决方案。

传统的网络结构对用户应用所造成的限制,正是三层交换技术所要解决的关键问题。目前,市场上最高档路由器的最大处理能力为每秒25 万个包,而最高档交换机的最大处理能力则在每秒1000 万个包以上,二者相差40 倍。在交换网络中,尤其是大规模的交换网络,没有路由功能是不可想象的。然而路由器的处理能力又限制了交换网络的速度,这就是三层交换所要解决的问题。第三层交换机并没有象其他二层交换机那样把广播封包扩散,第三层交换机之所以叫三层交换机是因为它们能看得懂第三层的信息,如IP 地址、ARP 等。因此,三层交换机便能洞悉某广播封包目的何在,而在没有把他扩散出去的情形下,满足了发出该广播封包的人的需要,(不管他们在任何子网里)。如果认为第三层交换机就是路由器,那也应称作超高速反传统路由器,因为第三层交换机没做任何"拆打"数据封包的工作,所有路过他的封包都不会被修改并以交换的速度传到目的地。目前,第三层交换机的成熟还有很长的路,象其它一些新技术一样,还待进行其协议的标准化工作。目前很多厂商都宣称开发出了第三层交换机,但经国际权威机构测试,作法各异且性能表现不同。另外,可能是基于各厂商占领市场的策略,目前的第三层交换机主要可交换路由IP/IPX 协议,还不能处理其它一些有一定应用领域的专用协议。因此,有关专家认为,第三层交换技术是将来的主要网络集成技术,传统的路由器在一段时间内还会得以应用,但它将处于其力所能及的位置,那就是处于网络的边缘,去作速度受限的广域网互联、安全控制(防火墙)、专用协议的异构网络互连等。


1.2.5 三层交换技术特点

1、 线速路由:

和传统的路由器相比,第三层交换机的路由速度一般要快十倍或数十倍,能实现线速路由转发。传统路由器采用软件来维护路由表,而第三层交换机采用ASIC (Application Specific Integrated Circuit )硬件来维护路由表,因而能实现线速的路由。

2、IP 路由:

在局域网上,二层的交换机通过源MAC 地址来标识数据包的发送者,根据目的MAC 地址来转发数据包。对于一个目的地址不在本局域网上的数据包,二层交换机不可能直接把它送到目的地,需要通过路由设备(比如传统的路由器)来转发,这时就要把交换机连接到路由设备上。如果把交换机的缺省网关设置为路由设备的IP 地址,交换机会把需要经过路由转发的包送到路由设备上。路由设备检查数据包的目的地址和自己的路由表,如果在路由表中找到转发路径,路由设备把该数据包转发到其它的网段上,否则,丢弃该数据包。专用(传统)路由器昂贵,复杂,速度慢,易成为网络瓶颈,因为它要分析所有的广播包并转发其中的一部分,还要和其它的路由器交换路由信息,而且这些处理过程都是由CPU 来处理的(不是专用的ASIC ),所以速度慢。第三层交换机既能象二层交换机那样通过MAC 地址来标识转发数据包,也能象传统路由器那样在两个网段之间进行路由转发。而且由于是通过专用的芯片来处理路由转发,第三层交换机能实现线速路由。

3、路由功能

比较传统的路由器,第三层交换机不仅路由速度快,而且配置简单。在最简单的情况(即第三层交换机默认启动自动发现功能时),一旦交换机接进网络,只要设置完VLAN ,并为每个VLAN 设置一个路由接口。第三层交换机就会自动把子网内部的数据流限定在子网之内,并通过路由实现子网之间的数据包交换。管理员也可以通过人工配置路由的方式:设置基于端口的VLAN ,给每个VLAN 配上IP 地址和子网掩码,就产生了一个路由接口。随后,手工设置静态路由或者启动动态路由协议。

4、路由协议支持:

第三层交换机可以通过自动发现功能来处理本地IP 包的转发及学习邻近路由器的地址,同时也可以通过动态路由协议RIP1 ,RIP2 ,OSPF 来计算路由路径。下面介绍一下RIP 协议和OSPF 协议。路由信息协议(RIP )是一个内部网关协议(IGP ),主要应用在中等规模的网络,RIP 协议采用距离向量算法,在路由信息中包括了到达目的IP (向量)的跳跃次数(距离),跳跃次数最小的路径是最优路径。RIP 允许的最大跳跃次数为15 ,需要跳跃16 次及其以上的目的地址被认为是不可达的。RIP 路由器通过周期性广播来与邻近的RIP 路由器交换路由信息,广播的时间间隔可以设定。广播的内容就是整个路由表。当RIP 路由器收到邻近路由器的路由表后,要经过计算来决定是否更新自己的路由表。如果自己的路由表需要更新,路由器在更新完毕后会立即把更新的内容发到邻近的路由器而不必等待广播间隔时间的结束。

引起路由表的变化可能会有如下原因:

● 启动了一个新的接口;

● 使用中的接口出现了故障;

● 邻近路由器的路由表改变;

● 路由表中的某条记录的生存周期结束,被自动删除。

RIP 路由器要求在每个广播周期内,都能收到邻近路由器的路由信息,如果不能收到,路由器将会放弃这条路由:如果在90 秒内没有收到,路由器将用其它邻近的具有相同跳跃次数(HOP )的路由取代这条路由;如果在180 秒内没有收到,该邻近的路由器被认为不可达。RIP 将路由器分为两种类型,一种是主动的,一种是被动的。主动路由器既可以发送自己的路由表,也可以接受邻近路由器的路由表。被动路由器只能接受邻近路由器的路由表。一旦启动了RIP 协议的某个端口学到了一条路由,它将保留这条路由,直到学到更好的路由。一旦有端口广播说某条路由失败了,其它收到这条消息的端口都应该对通过RIP 获得的路由信息做过时处理。一条路由如果在180 秒内没有对外广播路由信息的话,该路由将会被认为是无效。此外,当接口启动RIP 时,它通过和其直接相连的接口建立路由表。在和邻近路由器交换路由信息,建立一个稳定的最优化的路由表的过程中,有可能出现信息回路。一旦路由器收到了以自己作为中间跳转的路由,肯定出现了信息回路。例如:R2 有一条通往RA 的路由,它把这条路由广播给了R1 ,但是,在R1 给R2 的路由信息中也有到RA 的路由,而且是以R2 作为转跳路由器,这时就出现了信息回路。水平分割技术可以避免这种信息回路的产生。

5、自动发现功能:

有些第三层交换机具有自动发现功能,该功能可以减少配置的复杂性。第三层交换机可以通过监视数据流来学习路由信息,通过对端口入站数据包的分析,第三层交换机能自动的发现和产生一个广播域、VLAN 、IP 子网和更新他们的成员。自动发现功能在不改变任何配置的情况下,提高网络的性能。第三层交换机启动后就自动具有IP 包的路由功能,它检查所有的入站数据包来学习子网和工作站的地址,它自动地发送路由信息给邻近的路由器和三层交换机,转发数据包。一旦第三层交换机连接到网络,它就开始监听网上的数据包,并根据学习到的内容建立并不断更新路由表。交换机在自动发现过程中,不需要额外的管理配置,也不会发送探测包来增加网络的负担。用户可以先用自动发现功能来获得简单高效的网络性能,然后根据需要来添加其他的路由、VLAN 等功能。

2006/12/12 0:59
应用扩展 工具箱


回复: 交换机技术资料大全
网站管理员
注册日期:
1970/1/1 8:00
所属群组:
网站管理员
注册会员
帖子: 56
等级: 6; EXP: 34
HP : 0 / 133
MP : 18 / 19576
离线
在第三层,自动发现有如下过程:

● 通过侦察ARP ,RARP 或者DHCP 响应包的原IP 地址,在几秒终之内发现IP 子网的拓扑结构。

● 在同一网络的不同网段之间建立一个逻辑连接,即在网段间进行路由,实现网段间信息通讯。

● 学习地址,根据IP 子网、网络协议或组播地址来配置VLAN ,使用IGMP (Internet Group Management Protocol )来动态更新VLAN 成员。

● 支持ICMP (Internet Control Message Protocol )路由发现选项。

● 存储学习到的路由到硬件中,用线速转发这些地址的数据包。

● 把目的地址不在路由表中的包送到网络上的其他路由器。

● 通过侦听ARP 请求来学习每一台工作站的地址。

● 在子网之内实现IP 包的交换。

在第二层,自动发现有如下过程:

● 通过硬件地址(MAC )的学习,发现基于硬件地址(MAC )的网络结构。

● 根据ARP 请求,建立路由表。

● 交换各种非IP 包。

● 查看收到的数据包的目的地址,如果目的地址是已知的,将包转发到已知端口,否则将包广播到它所在的VLAN 的所有成员。

6、 过滤服务功能:

过滤服务功能用来设定界限,以限制不同的VLAN 的成员之间和使用单个MAC 地址和组MAC 地址的不同协议之间进行帧的转发。帧过滤依赖于一定的规则,交换机根据这些规则来决定是转发还是丢弃相应的帧。早期的802.1d 标准(1993 ),定义的基本过滤服务规定,交换机必须广播所有的组MAC 地址的包到所有的端口。新的802.1d 标准(1998 )定义的扩展过滤服务规定,对组MAC 地址的包也可以进行过滤,对于交换机的外连端口要过滤掉所有的组播地址包。如果没有设置静态的或者动态的过滤条件,交换机将采用缺省的过滤条件。扩展过滤服务功能使用GMRP(Group Multicast Registration Protocol) ,通过产生、删除一个组或者组成员,来控制交换机的动态组转发和组过滤。交换机和工作站使用GMRP 来申明他们是否愿意接收一个组MAC 地址的帧。GMRP 协议在网上的交换机之间传波这样的组信息,使得交换机能够更新它们的过滤信息以实现扩展服务功能。交换机在不做任何配置的情况下,就具有过滤服务和扩展过滤服务功能。对旧的交换机、集线器、路由器,由于它不支持动态的组播地址过滤,因而在与它们连接的相应端口要进行扩展过滤配置。交换机根据过滤数据库来进行帧的过滤,交换机可以通过动态学习和手工配置两种方式来维护过滤数据库。交换机检查过滤数据库,根据以下条件来决定某个MAC 地址或者某个VLAN 标识的包是否应该转发到某一个端口:

● 默认地址

● 由管理员键入的静态过滤信息

● 通过查看数据包源地址而动态需学习到的单目地址

● 动态或者静态的VLAN

● 通过GMRP 管理的动态组播过滤信息或VLAN 成员信息

7、二层(链路层)VLAN:

在第二层,可以支持基于端口的VLAN 和基于MAC 地址的VLAN 。基于端口的VLAN 可以快速的划分单个交换机上的冲突域,基于MAC 地址的VLAN 可以支持笔记本电脑的移动应用。

8、三层(网络层)VLAN:

三层VLAN 可以按照如下方式划分:

● IP 子网地址

● 网络协议

● 组播地址

第三层交换机的第三层VLAN ,不仅可以手工配置,也可以由交换机自动产生。交换机通过对数据包的分析后,自动配置VLAN ,自动更新VLAN 的成员。第三层交换机能够工作在以DHCP(Dynamic Host Control Protocol)分配IP 地址的网络环境中。交换机能自动发现IP 地址,动态产生基于IP 子网的VLAN ,当通过DHCP 分配一个新的IP 地址时,第三层交换机能很快的定位这个地址。第三层交换机通过IGMP 、GMRP 、ARP 和包探测技术来更新其三层的VLAN 成员组。通过基于Web 的网络管理界面,可以对自动学习的范围进行设定:自动学习可以是完全不受限、部分受限或者完全禁止。

9、 第三层交换机是如何处理VLAN 的:

VLAN 通过对发送和过滤的限制提高了网络的性能。第三层交换机通过侦听来更新VLAN 成员表,根据数据包头的成员信息来做出转发或过滤决定。下面是交换机处理VLAN 的几个过程。

数据帧入站:

交换机根据入站数据帧的VLAN 标识号(VID )将它们分类,无标号的为一类,标号相同的为一类。交换机根据VID 来决定转发或者丢弃一个数据包,同时交换机也可以分配一个VID 给一个无标记帧或者贴了优先级标记的帧。

VLAN 标记:

如果一个数据帧没有标记VID ,交换机将会分配一个VID 给它,并把这个VID 插到它的帧头中,这个过程叫做贴VLAN 标签。交换机通过这个过程来处理包的转发,来填写数据帧的VLAN 或者优先级信息的标记字段。管理员可以设置优先级别来选择VLAN 类型,选择VID 值。交换机的缺省设置,首先选择的是贴IP 子网信息,然后是网络协议,然后是MAC 地址,然后是数据帧入站的端口。

过滤:

该过程验证目的地址和源地址是否在同一个VLAN 中。

转发:

根据VLAN 数据库的信息,交换机处理一个数据帧是要么转发,要么丢弃。

学习:

交换机检查数据帧的源地址和VLAN 分类信息,并且把它们记录在转发库里。

10、 VLAN 应用举例:

下面是一些不同形式的VLAN 应用举例:

● 工程部有些机密文件需要保密

解决方法:通过把工程部的用户放到他(或她)自己的基于MAC 地址的VLAN 中。这个VLAN 所唯一允许的访问,只有该用户自己。任何其它用户都不能监听到该用户的内容,因为该用户的内容不会转发到其它的网段上去。另

外,还有一种更加安全的方式,分配一个专用的端口给这个用户,为他产生一个基于端口的VLAN 。

● 销售部门的笔记本用户经常需要从外地进行拨号访问

解决方法:产生一个基于IP 子网的VLAN ,使用IP 地址来表示用户。这样无论用户处在何处都能进行网络访问。

● 公司安装了视频培训服务器,要防止用户做视频访问时占用太多的带宽

解决方法:产生一个组播地址的VLAN 。

● 公司总裁需要能访问财务,销售等其它部门的VLAN

解决方法:使公司总裁成为其它各部门的VLAN 的成员。

相关网络术语

Broadcast(广播)

递送报文分组的一种方式,按这种方式送出的报文分组将送到与发送系统连通的广播地址所覆盖的所有计算机系统。

Broadcast Address(广播地址)

专门用于同时向网络中所有工作站进行发送的一个地址。在使用TCP/IP 协议的网络中,主机标识段hostid 为全1 的IP 地址为广播地址,广播的分组传送给hostid 段所涉及的所有计算机。例如,对于10.1.120.0 (255.255.255.0 )网段,其广播地址为10.1.1.255 (255 即为2 进制的11111111 ),当发出一个目的地址为10.1.1.255 的分组(封包)时,它将被分发给该网段上的所有计算机。

Collision(冲突)

多个事件同时请求一个服务,而这个服务又不能区分和应付多个请求所出现的现象。以太网使用CSMA/CD 处理冲突和协调重新传输。

Flow Control(流量控制)

为防止计算机网络中信息传输出现拥挤而采取的一种措施。流量控制可在网络的多个层次上实现。例如在TCP/IP 网络环境中,可在第三层即网络层上用ICMP 协议采用抑制信源的办法实现流量控制。该机制是在点到点链路上的两个站之间建立的。如果接收站端拥塞,那么它可以将一个叫做“暂停帧”的帧发回连接另一端的始发站点,指示始发站点在某一具体时段停止发送数据包。在发送更多的数据之前,发送站要等待这种请求时间。接收站还能够以零等待时间将一个帧发回始发站点,指示始发站点再次开始发送数据。更复杂的办法可以连续改变发送频率,例如在网络第四层即传输层上采用的窗口机制就属于这种流量控制方法。

Full-duplex(全双工)

全双工是在通道中同时双向数据传输的能力。

Half-duplex(半双工)

在通道中同时只能沿着一个方向传输数据。

IGMP Internet 工作组管理协议)

IGMP 主要用来解决网络上广播时占用带宽的问题。当网络上的信息要传输给所有工作站时,就发出广播(broadcast )信息(即IP 地址主机标识位全为1 ),交换机会将广播信息不经过滤地发给所有工作站;但当这些信息只需传输给某一部分工作站时,通常采用组播(multicast ,也称多点广播)的方式,这就要求交换机支持IGMP 。支持IGMP 的交换机会识别组播信息并将其转发至相应的组,从而使不需要这些信息的工作站的网络带宽不被浪费。IGMP 对于提高多媒体传输时的网络性能尤为重要。

Multicast(组播)

广播中组播是向选定目标发送信息的处理过程。对于广播信号,所有设备都准备好随时接收,而与广播不同的是组播仅对那些预先设置可以接收组播的网络节点进行有效传送。

Port Mirror(端口镜像)

Port Mirror 是用于进行网络性能监测。可以这样理解:在端口A 和端口B 之间建立镜像关系,这样,通过端口A 传输的数据将同时复制到端口B ,以便于在端口B 上连接的分析仪或者分析软件进行性能分析或故障判断。

Port Trunking(端口干路)

Port Trunking 即将交换机上的多个物理端口,在逻辑上捆绑(bundle )在一起,形成一个拥有较大带宽的端口,组成一个干路。可以均衡负载,并提供冗余连接。

QoS(服务质量)

QoS 是一个用于定义用户应用所需的特定参数的术语。服务参数的定义方式可能包括带宽需求、抖动、等待时间以及延迟。ATM 通过支持CBR 、ABR 以及UBR 流量来提供QoS 保证。

RARP(反向地址解析协议)

RARP 用在仅知道一台计算机TCP/IP 网上的硬件地址(MAC )来确定IP 地址的情况。

RMON :

RMON MIB 由一组统计数据、分析数据和诊断数据构成,利用许多供应商生产的标准工具都可以显示出这些数据,因而它具有独立于供应商的远程网络分析功能。RMON 探测器和RMON 客户机软件结合在一起在网络环境中实施RMON 。RMON 的监控功能是否有效,关键在于其探测器要具有存储统计数据历史的能力,这样就不需要不停地轮询才能生成一个有关网络运行状况趋势的视图。“RMON MIB 功能组”功能框可以对通过RMOM MIB 收集的网络管理信息类型进行描述。

SNMP (简单网络管理协议)

SNMP 是一种广为使用的网络协议,它使用嵌入到网络设备中的代理软件来收集网络通信信息和有关网络设备的统计数据。代理不断地收集统计数据,如所收到的字节数,并把这些数据记录到一个管理信息库(MIB)中。网管员通过向代理的MIB发出查询信号可以得到这些信息。

Stackable(堆叠)

堆叠是通过集线器的背板或是通过专用堆叠线缆连接起来的。堆叠后的数台集线器或交换机在逻辑上是一个被网管的设备。

Spanning tree(生成树)

Spanning Tree 亦遵循IEEE803.1d 标准。当网络中出现环路时,该协议可以采用生成树的算法从逻辑上断开其中一条连接,使其成为备份线路。当网络出现断路时,该协议会自动启动上述备份线路,确保网络正常工作。一种用于在网络中检测环路并逻辑地阻塞冗余路径,以确保在任意两个节点之间只存在一条路径的技术。为提高可靠性,网络中的设备间常需建立冗余连接。但是以太网的逻辑拓扑结构是星型或总线型的,因此链路中不允许出现环路。Spanning Tree 可以解决上述矛盾。

TCP/IP(传输控制协议/互联网协议)

互联网协议族定义了内容广泛的服务,使得异构的网络系统可以相互操作。该协议族是一个分层的协议集合,包含了网络服务和通信的所有方面。它的主要定义包含在RFC 791 和RFC 793 中,但许多其他的相关RFC 也适用于该协议族。

Throughout(吞吐率)

吞吐率是指在一指定时间内由一处传输到另一处或被处理的数据量。以太网吞吐率的单位为“兆比特每秒”或“Mb/s ”。

Uplink(级联)

级联是通过集线器(或交换机)的某个端口与其它集线器或交换机相连的,级联后每台集线器或交换机在逻辑上仍是多个被网管的设备。通过级联端口相连的设备不需要Cross-over 电缆。

交换机技术简介及应用分析

交换机技术简介及应用分析
交换机的分类及功能
交换机是构建网络平台的“基石”,又称网络开关。它也属于集线器的一种,但是和普通的集线器功能上有较大区别。普通的集线器仅起到数据接收发送的作用,而交换机则可以智能的分析数据包,有选择的将其发送出去。举个例子来说:我们发出了一批专门发给某个人的数据包,如果是在使用普通集线器的网络环境中,则每个人都能看到这个数据包。而在使用了交换机的网络环境中,交换机将分析这个数据包是发送给谁的,之后将其进行打包加密,此时只有数据包的接收人才能收到。
从广义上来看,交换机分为两种:广域网交换机和局域网交换机。广域网交换机主要应用于电信领域,提供通信用的基础平台。而局域网交换机则应用于局域网络,用于连接终端设备,如PC机及网络打印机等。从传输介质和传输速度上可分为以太网交换机、快速以太网交换机、千兆以太网交换机、FDDI交换机、ATM交换机和令牌环交换机等。从规模应用上又可分为企业级交换机、部门级交换机和工作组交换机等。各厂商划分的尺度并不是完全一致的,一般来讲,企业级交换机都是机架式,部门级交换机可以是机架式(插槽数较少),也可以是固定配置式,而工作组级交换机为固定配置式(功能较为简单)。另一方面,从应用的规模来看,作为骨干交换机时,支持500个信息点以上大型企业应用的交换机为企业级交换机,支持300个信息点以下中型企业的交换机为部门级交换机,而支持100个信息点以内的交换机为工作组级交换机。以下若不特殊说明,所提到的交换机指的都是局域网交换机。

众所周知,交换机工作在OSI参考模型的第二层--数据链路层上,主要功能包括物理编址、网络拓扑结构、错误校验、帧序列以及流控。物理编址(相对应的是网络编址)定义了设备在数据链路层的编址方式;网络拓扑结构包括数据链路层的说明,定义了设备的物理连接方式,如星型拓扑结构或总线拓扑结构等;错误校验向发生传输错误的上层协议告警;数据帧序列重新整理并传输除序列以外的帧;流控可以延缓数据的传输能力,以使接收设备不会因为在某一时刻接收到了超过其处理能力的信息流而崩溃。目前交换机还具备了一些新的功能,如对VLAN的支持、对链路汇聚的支持,甚至有的具有防火墙的功能,这就是第三层交换机所具有的功能。所谓的第三层交换机就是在基于协议的VLAN划分时,增加了路由功能。

交换机技术现状及趋势分析

第三层交换是采用 Intranet的关键,它将第二层交换机和第三层路由器两者的优势结合成一个灵活的解决方案,可在各个层次提供线速性能。这种集成化的结构还引进了策略管理属性,它不仅使第二层与第三层相互关联起来,而且还提供流量优先化处理、安全以及多种其它的灵活功能,如链路汇聚、VLAN和 Intranet的动态部署。第三层交换机分为接口层、交换层和路由层三部分。

接口层包含了所有重要的局域网接口:10/100M以太网、千兆以太网、FDDI和 ATM。交换层集成了多种局域网接口并辅之以策略管理,同时还提供链路汇聚、VLAN和Tagging机制。路由层提供主要的 LAN路由协议:IP、IPX和 AppleTalk,并通过策略管理,提供传统路由或直通的第三层转发技术。策略管理和行政管理使网络管理员能根据企业的特定需求调整网络。

相对第三层,第二层被采用的程度决定了所谓的网络控制分类,一个纯第二层的解决方案,是最便宜的方案,但它在划分子网和广播限制等方面提供的控制也最少。而第三层交换机能为分类中的所有层次提供动态的集成支持。传统的通用路由器与外部的交换机一起使用也能达到此目的,但是与这种解决方案相比,第三层交换机需要更少的配置,更小的空间,更少的布线,价格更便宜,并能提供更高更可靠的性能。

第三层交换机基本上具有了传统交换机的所有功能,以第三层交换机为准,交换机具体技术实现包括:

1.可编程ASIC
ASIC是专用于优化第二层处理的专用集成电路,是当今联网解决方案的核心,它将多项功能集成在一个芯片上,具有设计简单、高可靠性、低电源消耗、更高的性能和成本更低等优点。
2.分布式流水线
有了分布式流水线,多个分布式的转发引擎能快速地独立传送数据包。在单个流水线中,多个 ASIC芯片同时处理多个帧。这种并发性和流水线可将转发性能提高到一个新高度:在所有的端口上实现点播(Unicast)、广播(Broadcast)和组播(Multicast)的线速性能。
3.动态可扩展的内存
对于先进的局域网交换产品,真实的性能是建立在智能化的存储器系统之上的。第三层交换机将存储器的一部分直接与转发引擎相关联。增加更多的接口模块,包括各自的转发引擎,存储器也相应地扩展了。并通过流水线式的ASIC处理,动态地构造缓存,增加了内存的使用率,系统也能够处理大的突发数据流而不丢包。
4.先进的队列机制
即使网络设备有突出性能,也会受到其所联接网段上的拥挤带来的损害。传统上,通过一个端口的流量必须在只有一个输出队列的缓存中保存,不论它的优先级是多大,也必须按照先进先出的方式被处理。当队列满的时候,任何超出的部分都将被丢弃。此外,当队列变长时,延时也增加了。这个特点使得在传统的以太网上运行实时的事务处理及多媒体应用变得非常困难。基于这种原因,许多网络设备厂商开发了新技术,可在一个以太网段上提供不同的服务级别,同时提供对延时和抖动的控制。这样就引进了每端口有不同级别队列的机制。
这种队列能更好地区分不同的流量级别,以便将网络更接近地与高性能应用匹配。像多媒体和实时数据流这样的数据包被放进高优先级队列。使用加权公平排队算法,可以更频繁地处理高优先级队列,但又不会置低优先级队列于不顾。传统应用的用户不会察觉到响应时间和吞吐量的变化,而那些使用紧急应用的用户则可得到及时的响应。
5.自动流量分类
有些数据流比其它数据流更重要。使用自动流量分类,第三层交换机可以指示数据包流水线区分用户指定的数据流,从而实现低延时、高优先级传输及避免拥塞。
6.智能许可权控制
第三层交换机提供多种安全机制,并使用流量分类器,管理员可以限制任何被识别的数据流,包括限制对服务器的访问及排除无用的协议广播。这一点是网络技术领域里的突破性进展,即提供线速防火墙。
7. 动态流量监督
流量的分类、优先化处理以及资源保留使企业网和Intranet管理员能将精力集中在更重要的事情上,即传统的和下一代的应用。但有一个事情还需要去做,那就是流量监督。流量监督不太算是一个策略机制,因为它实际上是一个保护机制。它监视流量和网络的拥塞情况,并对这些情况作出动态的响应,以保证所有的网络元素(终端用户和网络本身)都置于控制之下并能最佳运行。
为了在拥塞的局域网上进行优先化处理,许多第三层交换机使用了IEEE 802.1p的服务级别。为了避免拥塞,高性能第三层交换机甚至采用了更先进的技术来动态地监视输出队列的大小,以便发现一个端口是否将变得拥挤。通过控制队列的大小和拥塞,网络可以维持对延时敏感的数据流所需的极限。
8.可扩展的RMON实现
对RMON的支持已经成为进行主动和广泛的网络管理一个不可缺少的组成部分。RFC 1757定义的MIB含有物理层和MAC层的统计数据,RFC 2021定义的RMON 2将统计数据的采集扩展至网络层以上。
9.向量处理技术
向量处理技术用来加速数据帧的处理速度。第三层交换机的体系结构不仅在第二层之上增加了第三层的控制能力,而且还增加了多方位的多种向量控制,从而极大加强了向量处理功能。第三层交换机的向量处理有众多的优点:
*快速的帧处理速度。由于有了基于 ASIC的数据包分类、转发和解释技术,由软件进行帧解码的工作被降至最低的程度,与纯软件的设计相比,这种方法可以获得高得多的性能。
*具有高度适应性的功能控制。向量处理与可编程的ASIC相配合工作,从而能够以最小的开销支持未来的新标准。例如,对 IPv6的支持已经是向量逻辑的一部分。
*增强的管理功能。多方位的向量处理还包括内置的网络管理代理及RMON等。
10.多RISC处理机
在高可靠性的交换机中,一个专门的高性能 RISC处理机是绝对需要的。事实上,帧处理机(FP)与向量逻辑的结合所提供的性能是无与伦比的。
一个独立的应用处理机(AP)可辅助FP。象FP一样,AP也是一个高性能的 RISC处理机。AP控制除帧转发以外的所有操作:高层的桥接和路由,如生成树和 OSPF协议,以及SNMP操作和 HTTP操作等。使用AP和FP的好处是显而易见的,因为管理和计算方面的工作不影响数据转发,从而实现高吞吐量和低延时。

通过以上的技术分析,我们不难看出,高性能、安全性、易用性、可管理性、可堆叠性、服务质量及容错性是当前交换机的技术特点。随着视频会议、实时组播、网络电话、程控交换及自动呼叫转发等表明多媒体时代到来的新一代应用的出现,交换技术该向何处发展呢?有一点可以肯定的是,高带宽、安全性、服务质量及智能化应该是新一代交换机所应追求的技术方向。不过,值得一提的是,现在已经有厂家正朝着交换机分布式网络计算方向迈进。
b
Web交换机
Internet的发展瞬息万变,为应付不断增加的负载和新的应用需求,Web交换机应运而生,为数据中心设备(包括Internet服务器、防火墙、高速缓冲服务器和网关等)提供管理、路由和负载均衡传输。不同于传统网络设备的是,传统网络设备注重高速完成单个帧和数据包的交换,而Web交换侧重于跟踪和处理Web会话。除了由传统第二/三层交换机所提供的连接和封包路由外,Web交换机还可提供传统局域网交换机和路由器所缺乏的完备策略,将局部和全球服务器负载均衡、存取控制、服务质量保证(QoS)以及带宽管理等管理能力结合起来。目前,Web交换机已由纯粹的传输层(第四层)设备发展到具有基于内容(第七层)的交换的智能。利用内容或用户分类进行Web请求重定向是Web服务器的一项功能。不过,Internet传输和商业的发展远远超过计算机处理能力的提高。把内容分类卸到Web交换机可平衡整个网站的基础设施,下表以Alteon公司的产品为例介绍 Web交换机产品。

交换机应用分析

1.大型企业(500节点以上):大型企业具有跨地域、跨行业、多层次和全方位等特点,业务内容覆盖面广,网络数据传输量大,数据交换能力强,首先要满足企业内部通信的需要, 建立网络平台。并且要求网络系统不宕机,稳定可靠,不间断运行。要在注重考虑高性能、可管理性、高可靠性、适用性和性能价格比的基础上选择产品。
2.邮电行业:电信系统由于其经营特点和为公众服务的目的,决定了电信系统机构在地理位置上分布范围广,提供业务多而且不断更新b。网络设备要求更是严格,一般网络设备选型为广域网产品。
3.铁路系统:铁路系统一般对广域网通信要求较高,各个站点的节点数不是特别多,所以各站点在建设局域网进行设备选型时可考虑选择部门级交换机或工作组级交换机。
4.银行业:该行业支行分布范围广,业务活动频繁,业务品种变化多,业务量增长快,因此对稳定性和响应时间要求比较高。由于该行业对数据敏感性特别高,因此要求有链路冗余,传输链路应具有备份功能,一旦主线路发生故障,备份线路可立即替换。所以要求网络设备处理能力强、容错性能好,并考虑好扩展性、可用性及可靠性。
5.证券业:该行业具有迅速、及时响bb应和稳定、安全、可靠、不间断运行的特点。设备选型要求背板速度快、冗余性能好、可管理及可堆叠,并充分考虑好设备的可开放性、可扩展性、可用性和可靠性。
6.教育行业:该行业对数据的关键性要求不是很高,涉及到多媒体教学、视频点播等主要应用,设备选型时要考虑到高带宽、高可用性及高扩展性。
7.中小型企业:对于企业的网络节点数少于500点的中小型企业,在创建企业Intranet时,由于企业内部数据流量不大,实b时响应性不高,同时考虑到企业的可持续性发展,应注重网络设备的通用性、可靠性、可管理性、可扩充性及性能价格比。

总之,网络已经改变,用户却希望网络总是可以工作并且总是透明的。适应这种需求需要有弹性、速度和安全的控制。Internet 及Intranet已经使企业将注意力集中到最重要的东西--信息上,而不是基础结构上。通过策略控制网络是新的网络技术范例。控制方式使网络变得透明并保持配置 Intranet的灵活性。通过交换技术,能满足用户今天及未来的商业需求。而灵活的组网、线速性能以及完全的扩展性能使设备配置长期有效。

2006/12/12 1:05
应用扩展 工具箱


回复: 交换机技术资料大全
新进会员
注册日期:
1970/1/1 8:00
所属群组:
注册会员
帖子: 1
等级: 1; EXP: 0
HP : 0 / 0
MP : 0 / 0
离线
如果形成文档就好了

2007/3/16 4:28
应用扩展 工具箱






可以查看帖子.
不可发帖.
不可回复.
不可编辑自己的帖子.
不可删除自己的帖子.
不可发起投票调查.
不可在投票调查中投票.
不可上传附件.
不可不经审核直接发帖.

[高级搜索]



系统导航

 

Copyright © 2001-2010 安信网络. All Rights Reserved
京ICP备05056747号